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SECTTON 1.0

UTW _FAN DESIGN

1.1 SUMMARY

An under-the-wing (UIW) and an over-the-wing (OTW) fan zotor will be
built and tested as part of the NASA QCSEE Program. The UTW fan is a geared
variable-pitch design with 18 composite fan blades. This concept, which in-
cludes full reverse thrust capability, is expected to offer significant
advantages to a high-bypass fan system including:

° Lighter weight through the use of composite fan blades and by
eliminating the heavy, large diameter thrust reverser

° Faster thrust response
° Improved off-design SFC
° Reduced off-design noise generation

At the major operating conditions of takeoff and maximum cruise, a cor-
rected flow of 405.5 kg/sec (894 lb/sec) was selected for both fans which
enables common inlet hardware to yield the desired 0.79 average throat Mach
number at the critical take-off noise measurement condition. The aerodynamic
design bypass pressure ratio is 1.34 for the UIW and 1.36 for the OTW which
is intermediate between the take-off and maximum cruise power settings. Take-
off pressure ratios are 1.27 for the UTW and 1.34 for the OTW. The take-off
corrected tip speeds are 289 m/sec (950 ft/sec) for the UIW and 354 m/sec
(1162 ft/sec) for the OIW. These pressure ratios and speeds were selected
on the basis of minimum noise within the constraints of adequate stall margin
and core engine supercharging.

The UTW fan was designed to permit rotation of the blades into the
reverse thrust mode of operation through boih fiat pitch (like a propeller)
and the stall pitch directions. The flowpath has been contoured to maintain
tight blade tip and hub clearances throughout the blade actuation range.

The vane~frame, which is common to both engines, performs the dual
function of an outlet guide vane for the bypass flow and a frame support for
the engine components and nacelle. The UTW island configuration was selected
specifically for the reverse thrust mode of operation.

Design practices and rotor material selections are consistent with
flight-designe rotors for both the UIW and OTW, This includes con-
sideration for't CF life and for such FAA flight requirements as burst
speed margin and bi¥@ strike capability. All rotor components for the UTW
fan rotor are of a fieht weight design.




SECTION 2.0

UTW FAN AERODYNAMIC DESIGN

2.1 OPERATING REQUIREMENTS

Major operating requirements for the under-the-wing (UTW) fan (Figure
1) are takeoff, where noise and thrust are of primary importance, and maxi-
mum cruise, where economy and thrust are of primary importance. At take-
off a low fan pressure ratio of 1.27 was selected to minimize the velocity
of the bypass stream at nozzle exit. A corrected flow of 405.5 kg/sec (894
lbm/sec) at this pressure ratio yields the iequired engine thrust. The in-
let throat is sized at this condition for an average Mzch number of 0.79 to
minimize the forward prcpagation of fan noise. This sizing of the inlet
throat prohibits higher corrected flow at altitude cruise. Required maxi-
mum cruise thrust is obtained by raising the fan pressure ratio to 1.39.
The aerodynamic design point was selected at an intermediate condition which
is a pressure ratio of 1.34 and a corrected flow of 408 kg/sec (900 1lb/sec).
Table 1 summarizes the key parameters for these three conditions.

Table 1. QCSEE UTW Variable-Pitch Fan Design Requirements.
Parameter Design Point Takeoff Maximum Cruise
Total fan flow 408 kg/sec 405.5 kg/sec | 405.5 kg/sec
(900 1b/sec) (894 1b/sec) | (894 1b/sec)
Pressure ratio - bypass floﬁ 1.34 1.27 1.39
Pressure ratio - core flow 1.23 1.20 1.21
Bypass ratio 11.3 11.8 11.4
Pitch setting Nominal Open 2° Closed 2°
Corrected tip speed 306 m/sec 289 m/sec 324 m/sec
(1005 ft/sec) (950 ft/sec) | (1063 ft/sec)

2.2 BASIC DESIGN FEATURES

A cross section of the selccted UIW fan configuration is shown in Figure
2. There are 18 variable-pitch composite rotor blades. The s>lidity of the
blades is 0.95 at the OD and 0,98 at the ID. The chord is linear with radius.
This permits rotation of the blades into the reverse thrust mode of operation
through both the flat pitch and the stall pitch directions. The spherical
casing radius over the rotor tip provides good blade tip clearances through-
out the range of blade pitch angle settings. Circumferential grooved casing
treatment is incorporated over the rotor tip to improve stall margin. Stall
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Fan Pressure Ratio

Fan Corrected Flow, 1b/sec
850 875 900 925
T Y 1 |
1-40 Max.
Cruise + 2°)
Closed
| / v105%
1.35 Variable—Pitch Aero
Mode;;? Design
\ \
\
1.30
105%
1.25 - T Fixed-Pitch ™ |
. ¥ Mode
Corrected Speed 95% ?5%
Inlet Throat Mach Number
0.76 0.79 0.82
1.20 i
380 390 400 410 420
Fan Corrected Flow, kg/sec
Figure 1. UTW Variable-Pitch Fan Design Requirements.
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margins are significant because a minimum fan tip speed was selected iLo mini-
mize noise generation. The circumferential grooved casing treatment type was
selected since this type of treatment improves stall margin and has shown
negligible adverse impact on overall fan efficiency. An additional benefit

of the casing treatwent is to reduce the material bulk cover the blade tip, for
a giveua clearance, which will reduce the severity of au inadvertent biade rub
as might be encountered during a bird strike.

The vane-frame is positioned at an axial distance downstream of the rotor

trailing edge equal to 1.5 true rotor tip chords. The vanes are nonaxisymmetric

In that five vane geometries, each with a different camber and staggzer, are
employed around the annulus. This nonaxisymmetric gecmetry is required to
conform the vane-frame downstream flow field to the geomeiry of the pylon,
which protrudes forward into the vane-frame, and simultaneously maintain a
condition of minimum zircumferential static pressure distortion upstream of
the vane-frame. There are 33 vanes in the vane-frame wh.ch yields a vane-
blade ratio of 1.83. Immediately following the rotor, in the hub region, is
an annular ring or island, The 96 OGV's for the fan hub, or core portion
flow, are in the annular .pace iLetween the under side of the island and the
hub. A full-circumference axial gap separates the island trailing edge from
the splitter leading edge. The splitter divides the flow into the bypass
portion and core portion. There are six struts in th. pgooszneck which guide
the fan hub flew into the core compressor.

The island configuration was selected specifically to permit the attain
ment of a high hub supercharging pressure ratio for forward pitch operatinn
without causing a large core flow induction pressure drop during reverse
pitch operation, see Section 2.3. In the forward mode ¢f operation, a
vortex sheet is shed from the trailing edge of the island in the form of a
swirl argl- discontinuity since most of the swirl in the flow under the
island is removed by the core OGV. Total pressure on top of the island dif-
fers from that under the island only by the lesses in the core OCV, hence
the Mach numbers of the two streams are nearly the same. The General Electric
CF6-6 fan incorporates a similar island configuration, except that the bypass
OGV's ure on top of the island and there is no swirl in the bypass flow at
the island trailing edge. A vortex sheet ig shed from the trailing edge of
this island configuration also. This vortex sheet is in the form of a veloc-
ity magnicude discontinuity. The swirl angle is zero both on top of and under
the island but the total presswroa differ by the work input in the tip region
of the 1/4 stage. Numerically, the strength of the QCSEE UTW island shed
vortex is approximately the same as the strewngth of the (F6-6 island shed
vortex. Orientation of the vortex vectors is rotated approximately 70°,
however .

2,3 REVERSE FLOW

A najor feature of the UIW fan is its ability to change the directica of
fan thrust by reversing the direction of flow through the fan. This flow
reversal affects the pressure level into the core engine (and, hence, the core
engine's ability to produce power) in two ways. irst, there is the direct
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loss of the fan hub supercharging pressure; and,second, there is the loss
associated with indvcting the flow into the core engine such as the recoveries
of the exlet, vane frame, turn arou.d the splitter leading edge, core OGV's,
and gooseneck strrts. The hut supercharging pressure loss is obviously
related to the mrgnitude of the design (forward mode) fan hub pressure ratio,
but the flow losses are also related to this magnitude. When operating in

the reverse thrast mode, camber on the core OGV's is in the wrong direction
and high hub sipercharging 1.1 forward operation increases the camber of both
bypass and co.e OGV's. Joncern over this matter because of relatively high
hub pressure ratio of the UIW far 7as the primary reason for selecting the
island approach. The major advantage to t..s configuration is that flow can
enter the core coupressor duct through the axial gap between the island and
splitter 2ad thereby avoid the problem of adversely oriented camber on the
core OGV's. The swirling flow, of course, must still pass through the six
axially oriented struts in the core inlet gcoseneck. Relatively, this path
for the flow is much less restrictive. A secord benefit is that the bluntness
of the splitter leading edge compared to the island leacing edge (which would
be the splitter leading edge if the axial gap were filled), is conducive to
minimizing losses associated with reversing the axial component of the core
portion flow from its forward direction in the bypass duct to its aft direc-
tion in the core transition duct.

Reverse fan thrust can be achieved by rotating the blades through the
flat pitch (like a propeller) or the stall pitch directions. Rotation of the
blades into the reverse thrust condition puts a constraint on selection of
blade solidity. This depends primarily on the direction in which the blades
are rotated and the blade twist. The constraint is on those blade sections
which pass through a tangential orientation, e.g., the leading edge of each
blade must be able to pass the trailing edge of the adjacent blade, or physical
interference will result. Therefore, those sections must have a solidity less
than unity.

Figure 3 shows a tip and hub section of two adjacent blades in nominal,
reverse through stall, and reverse through flat pitch orientations. The 43°
tip stagger for both reverse through flat and reverse through stall was
selected based on experimental reverse thrust performance. For blade rotation
through the flat pitch direction, the entire blade span 1is constrained to a
solidity less than one. For rotation thirough the stall pitch direction, the
outer portion of the blade is not constrained. However, because of the 44°
twist in the blade, the chord of the hub region cannot be increased signifi-
cantly without interference. The assumed orientation of the tip section
would have to be in eiror on the order of 5° before significant hub region
chord increase could be accommodated. Even if a hub region chord increase
could be accommodated, a significant increase in supercharging potential is
probably not available because the implied increase in blade twist would
probably cause a physical interference.

Therefore, it was concluded that a hub solidity less than unity was a
design requirement for reverse through stall pitch rather than a compromise
to permit reverse through flat pitch.
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2.4 PERFORMANCE REPRESENTATION WITH VARIABLE PITCH

The variable-pitch feature of the UIW fan adds a third independent vari-
able to the representation of fan performance in that, in addition to normal
independent variables of speed and operating line, the blade pitch angle is
also required. It has been found, hcwever, that experimental stage character-
istics at different rotor pitch angle settings can be collapsed into a nearly
universal characteristic applicable for all blade angle settings. The method
used to collapse the characteristics was to deduce the rotor incidence and
deviation angle from the test data and then calculate the performance of the
stage at nominal blade angle with the rotor operating at this incidence and
deviation angle and the test efficiency. A separate correlation of aero-
dynamic loading is used to identify a stall limit, as the collapsing technique
breaks down due to the change in aerodynamic loading inherent in the trans-
formation. Figure 4 shows the stage characteristics assumed for the UTW fan
at 100% corrected speed for a range of pitch angles. In the reverse flow mode
of operation a similar. but simplified, form of the universal characteristic
approach is used to represent fan performance. The same collapsing technique
is incorporated to include the effect of blade angle setting.

2.5 DETAILED CONFIGURATION DESIGN

The corrected tip speed at the aerodynamic design point was selected at
306 m/sec (1005 ft/sec). This selection is a compromise for design purposes
between 289 m/sec (950 ft/sec) at takeoff and the 324 m/sec (1063 ft/sec) at
maximum cruise. The objective design point adiabatic efficiency is 88% for
the bypass portion and 78% for the core portion. A stall margin of 16% is
projected at takeoff. This stall margin is provided at minimum tip speed by
incorporating circumferential grooved casing treatment over the rotor tip.
Minimum tip speed is important because of the favorable impact of low tip
speed on fan generated noise, fan efficiency in the transonic region, and the
mechanical design of the variable-pitch system. An inlet radius ratio of
0.44 balances the desire to minimize fan diameter within the physical con-
straints of the variable-pitch mechanism and gear box and good fan hub super-
charging for the core engine. A fan inlet flow per annulus area of 199
kg/sec-m? (40.8 lb/sec-ft2) at the design point results in a tip diameter of
1.803 m (71.0 in.).

The standard General Electric axisymmetric flow computation procedure was
employed in calculating the velocity diagrams. Several calculation stations
were included internal to the rotor blade to improve the overall accuracy of
the solution in this region. The physical island geometry is represented in
the calculations. Forward of the island and in the axial space between the
island and the splitter, calculation stations span the radial distance from
OD to ID. Within the axial space of the island, calculation stations span
the radial distance between the OD and the topside of the island and between
the underside of the island and the hub contour. In the bypa:z. and core inlet
ducts, calculation stations are also included. At each calculation station,
effective area coefficients consistent with established design practice were
assumed.
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A special constraint is necessary in the aerodynamic design of the island
geometry in that a smooth flow or Kutta condition must be satisfied at the
trailing edge of the island. The technique employed in this design was to
specify a calculation station at the axial location of the island trailing
edge which spanned the total flowpath height from OD to ID. Using this tech-
nique, a continuous radial distribution of static pressure results which was
assumed to be consistent with matching the Kutta condition. The radial loca-
tion of the island stream function of this calculation station was determined,
and the upstream geometry of the island was then adjusted to provide a smooth
continuous contour blending into this point. Iteration was obviously necessary
because of the interaction of the assumed geometry with the calculated radial
location of the island stream function. Convergence was found to be quite
rapid. An artificial radial displacement was incorporated betwe2n the island
upper surface streamline and the island lower surface streamline in order to
avoid problems in calculating the streemline curvatures. This displacement
was assumed equal to the island thickness at the trailing edge and was smoothly
blended to zero at an axial distance of approximately 10 edge thicknesses down-
stream.

The design radial distribution of rotor total pressure ratio is shown in
Figure 5. This distribution is consistent with a stage average pressure ratio
of 1.34 in the bypass region. Despite the lower-than-average pressure ratio
in the hub region, it has been maximized to the extent possible subject to
the constraint of acceptable rotor diffusion factors so as to provide maximum
core engine supercharging. A stage average pressure ratio of 1.23 results at
the core OGV exit. The radial distribution of rotor efficiency assumed for
the design is shown in Figure 6. The assumption of efficiency, rather than
total pressure loss coefficient, is a General Electric design practice for
rotors of this type. This distribution was based on the measured results from
similar configurations with adjustments to account for recognized differences.
The radial distribution of rotor diffusion factor which results from these
assumptions is shown in Figure 7. The moderately high diffusion factor in
the tip region of the blade, where stall generally initiates, confirms the need
for casing treatment to obtain adequate margin. The radial distributions of
rotor relative Mach number and air angle are shown in Figures 8 and 9, respec-
tively.

The assumed radial distribution of total-pressure-loss coefficient for
the core portion OGV is shown in Figure 10. The relatively high level, (0.2)
particularly in the ID region, is in recognition of the very high bypass ratio
of the UTW engine and, accordingly, the small size of the core OGV compared to
the rotor. The annulus height of the core OGV is approximately one-half of
the rotor staggered spacing, a significant dimension when analyzing secondary
flow phenomena. It is anticipated that the core OGV will be influenced by
the rotor secondary flow over the entire annulus height. The diffusion factor,
Mach number, and air angle radial distributions which result from the design
assumptions are also shown in Figure 10. An average swirl of 0.104 radial
(6°) is retained in the fluid at exit from the core OGV. This was done to
lower its aerodynamic loading and the magnitude of the vortex sheet shed from
the island. The transition duct (core inlet) struts (6) are cambered to accept
this swirl and remove it prior to entrance into the core engine.

10
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A tabulation of significant blade element parameters for the UTW design
is presented in Table 2 for both metric (2-A) and English (2-B) unmits.

2.6 ROTOR BLADE DESIGN

Detailed layout procedures employed in design of the fan blade generally
paralleled established design procédures. In the tip region of the blade,
where the inlet relative flow is supersonic, the uncovered portion of the
suction surface was set to ensure that the maximum flow-passing capacity is
consistent with the design flow requirement. Incidence angles ‘n the tip
region were selected according to transonic blade design practice which has
yielded good overall performance for previous designs. In the bub regior,
where inlet flow is subsonic, incidence angles were selectcd from NASA cas-
cade data correlations.

The blade trailing edge angle was established by the deviation angle
which was obtained from Carter's Rule applied to the camber of an equivalent
two-dimensional cascade with an additive empirical adjustment, X. This adjust-
ment is derived from aerodynamic design and performance synthesis for this
general type of rotor. Incidence and deviation angles and the empirical
adjustment angle employed in the design are shown in Figure 11,

Over the entire blade span, the minimum passage area, or throat, must be
sufficient to pass the design flow including allowances for boundary layer,
logses, and flow nonuniformities, In the transonic and supersonic region,
the smallest throat area (consistent with permitting design flow to pass) is
desirable, since this minimizes overexpansions on the suction surface. A
further consideration was to minimize disturbances to the flow along the for-
ward portion of the suction surface to minimize forward-propagating waves that
might provide an additional noise source. Design experience guided the degree
to which each of these desires was applied to individual section layouts.

The perceat throat margin, that percentage by which the ratio of the effective
throat area to the capture area exceeds the critical area ratio, is shown in
Figure 12, Values employed are generally consistent with past experience.

The blade shapes that result are generally similar to multiple circular arc
sections in the tip region, with a small percentage of the overall camber
occurring in the forward portion. In the hub region, the blade shapes are
similar to double circular arc sections.

Figure 13 shows plane sections of the blade at several radial locatioms.
Table 3 is a tabulation of the fan rotor blade coordinates (in inches) for
the sections shown in this figure. The coordinate center is at the stacking
axis., Figure 14 shows the resulting camber and stagger angle radial distri-
butions. The radial thickness distributious employed, which were dictated
primarily by aeromechanical considerations, are shown in Figure 15. The 0,13
thickness-to-chord ratio at the hub is larger than conventional practice
because of the composite blade requirements; a small performance penalty
will result. The additional profile loss created by this thickness, however,
is believed smaller than the system penalties associated with altering the
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Table 2-A,

HEADING

GENERAL
SL
PSl
RADIUS
X MM
F3
ULKAGE
FLOw

NUMENCLATURE FUR TABULATION

IDENTIFICATION

STREAMLINE NUMBER

STREAM FUNCTTIUN

STREAMLINE KADIUS

PLRCENT IMMERSIUMN FROM UUTER wall
AXTAL DIMENSION

ANNULUS BLUUKAGE FACTOR

WE1GHT FLOW

ANGLES AND MACH NUMBERS

PH]
ALPHA
BETA
MeABS
MeREL

VELOCITIES

c
W
(W4
Vv
cu
wu

MERIDIONAL FLOW ANGLE
ABSULUTE FLUW ANGLE
RELATIVE FLUW ANGLE
ABSULUTE MACH NUMBER
RELATIVE MACH NUMBER

SARLTAN (Cu/CQ)
SARCTAN (=WwU/CZ)

ABSULUTE VELOCITY
RELATIVE VELOCITY

AXIAL VELOCLTY

BLAVE SPEED

TANGENTIAL COMPUNENT OF €
TANLENTIAL CUMFUNENT UF w

FLUID PRUPERTIES

PT

1
TT=REL
P3

TS

RHQO
EFF

P11
111

ABSULUTE TOTAL PRESSURE

ABSULUTE TUTAL TEMPERATURE

RELATIVE TCTAL TEMPERATURE

STATIC PhESSUKRE

STATIL TemMPEKAIURE

SIATIC NDENSITY

CUMULATIVE ADIABATIC EFFICIENCY
KEFERLNCED TO PTI, TII

INLET ABSULUTE TOTAL PRESSURE

INLET ABSULUTE TOTAL TEMPERATURE

AERUDYNAMIC HBLADING PARAMETLRS

TPLL
PHeROW
DEL®T
0

oP/v
cZ/cz
SOLDTY
R=AVG
F=TAN
F=AXL
F=COEF
T=COtF

TUTAL PRESSUKE LOSS CUEFFICIENT

TUTAL PRESSURE RATIO ACROSS BLADF ROW

TOTAL TEMPERATURG RISk ACKOSS RUTODR
DIFFUSIUN FACTUR

STLIIC PFESSUKL KISE LUeSFICIENT

AXTAL VELNCITY WATI() ACROSS BLADE Kiw
SULIDITY

AVERAGE STREAMLINE RADIUS ACROSS BLADE ROW
TANGENTIAL BLADOE FORCE PER UNIT BLADE LENGTH
AXIAL BLADE FURCE PER UNLIT BLADt LENGTH

FLOW COEFFICIENT sCZi/7Ul

WURK CURFFICIEN!  s(22GoJaLP#DEL=T)/(U2*U2)

Design Blade Element Parameters ‘or QCSEE UTW Fan,

METRIC
UNITS

cH,
x
m,

KG/SEC

0FG,
DG,
DEG,

M/SEC
M/SEC
MsSEC
M/SEC
M/SEC
M/SEC

N/SG,CM,
DEG=K

OEG=K
N/7oW,CM,
rtG=K

KG/CU METER

N/SG,CM,
DEGeK
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ORIGINAL FAGE I3
OF POOR QUALITY

Table 2-B. Design Blade Element Parameters for QCSEE UTW Fan
(Continued).
NOMENCLATURE FQR TABULATION
ENGLISH
HEADING IDENTIFICATION UNITS
GENERAL
sL STREAML INE NUMBER -
PSSy STREAM FUNCTION -
RADIUS STRLAMLINE RADIUS IN,
% IMm PERCENT IMMR&SIUMN FROM UUTER wALL L]
2 AXIAL DIMENSION 1IN,
BLKAGE ANNULU3 BLOCKAGE FACTOR -
FLOW WETOLHY FLOW LBM/SEC
ANGLES AND MACH NUMBERS
pHl ALRIDIONAL FLOW ANGLE DEG,
ALPHA ABSOLUTE FLOW ANGLE SARCTAN (CU/CZ) DEG,
BE1A RELATIVE FLOW ANGLE BARCTAN (=WU/CZ) DLGe
MeADS ABSULUTE MACH NUMBER -
MeRLL RELATIVE MALK NUMBER -
VELOCITIES
c ABSOLUTE vELOCITY P1/75¢C
Lj RELATIVE vbLOCINY FT/SEC
c2 AXTAL VELUCI'Y FT/SEC
V] BLAVE SPELO F1/75¢C
cv TANGENTIAL COMPUNENT OF C F1/8¢kC
LTY] TANSENTIAL COVPUNLENY UF w F1/78kC
FLUID PRUPERTLES
PY ABSULUTE TUTAL PRESSURE LUF/8Q,IN,
T ABSULUTE TOTAL TEMPERATURE DEG=R
TiekEL RELATIVE TUYAL TEMPERATURE DEG=R
Ps STATIC PRESSURE LBF/78Q,1M,
18 STATIC VEMPERATURE DtG=R
RhO STATIC DENSIVY LEM/CLFT,
EHF CUMULATIVE ADIABATIC EFPICIENCY '
REFERENCEL TU PYIy TI1
P11 INLET ABSHLUTE TUTAL PRESSURE LBF /78U, IN,
LAR! INLET ABSOLUTE TOTAL TEMPLRATURE DLG=R
AERUDYNAMIC BLADING FaRaMtTEKS
TPLe TUTAL PrESSURE LNSS CUEFFICIEN -
PReRU» TOTAL PRESSUKE rATID ACROSS BLADE RUW -
DEL=T TUTAL TEMPERATURE k]ISE ACRUSS ROTUR 0EL6=R
0 OIFFUSION FALTUK .
or/0 STATIC PRESSURL R18F COGFrILILNT -
c2/C2 AXIAL VHELOCITY RATIQO ACROSS BLADE RUW -
SULOTY SOLIDLTY -
ReAVG AVERAGE STHREAMLINE RADIUS ACRUSS ULADE ROw IN,
FelAN TANGENTIAL SLAVE FORCE PER UNIT BLADE LENGTH Luf/IN
Fe=AXL ARIAL BLADE FORCE PER UNIT BLADPE LENGTH Lbk/1IN
FeCLEF FLOW COLFFICIENY sCZi/V} -
T=CUEF WURK CUEFPFICLIENT 2 (2062 JwCPaDEL=T ]/ (L2*UR) -
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Figure 13, UTW Fan Rotor Blade Plane Sections,
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Table 3. UTW Pan Rotor Blade Coordinates,
SECTION 1 RADIUS 85.8 cm (33.8 in.)
Convex Concave
X (Axial) Y X (Axial) Y
~3,57088 «4,59391 «3,57088 ) '4.5939!_
oY, 5804 T ed, 578837 7 »3,55%04 Tl 850755
«3.58149 =g3,55132 «3,52725% *§,508914
’53;57322"""“'64.51!09'"' 63;!9118""—"31356019
=3,.,55468 «8,486442 -4,85477 «8,53407

“=3,52497 " e4,40594 -

~3,40985 " " W,48620°

=3,46372  «4,35791  «3.35965  =a.42040
T=3,A3173 7T TRE,25076 T 3030327 W, 34934
«3,28197 =3,03998 =3,14552 *4,13796
3,10837 77 =3 76879 “ez.96199 <3 89538
«2,93466 -3,50118 «2,77855 *3,65661
Te2,76085 T T "a3,29697 " “e2,59523  —=3.82110
~2,58691 =3,05594 *2,41203 »3,180870
TS2,01283 7 T a2 81788 T +2,2289 T w2 95911
S2.23B617 Te2,58255  od,04606 < T SEIT3307
22,02933 «2,30383  -1,82678  =2.46255
S1,81981 T w2,02749 T o1 l40773 53 19574
_®1,61005  =1,7%a22 =1,38893 *1,93102
S1.40004™ " w1 48309 T 117038 o7 66776
~1,18976 =1,21357 =0,95209 *1,40535
TS0,97919 " S0,98512 <" 20]73430" o7 oy@32)-
=0,76830  =0,67730 «0,51643 «0,88090
S0,55706 T <0,40978 " 0129910 =0 61801
=0.345a4  =0,19216  -0,08216 =0,35428
=0,13341 0,12568 " 0113638 <0, 08948
0,07905 0,39390 0,350a8 0,17649
T0,292007 T 0,66258 T 0056610 "0 4438T
0450541 0,93165 0.78125 0471187
TO.T19397 1020000 T 0190583 0108086
_0,93a86 1226953 1,20933 1425060
1415018 © T1,73661 T 1,82117 Y .52060°
_1,36959 2700127 1,63132 1,79057
1.38062 2,26256 7" 1,83985° " —Z,05673
181122 2,51919  2.04682 2,32380
—2,63423 2,76950° T 2035237 T 2 5B438"
_2,2%8a7  3.012a4 2,45670 2,83912
2,483697 7 T3,206577 7 2766008 — 308697
22,7093 3747109 2,86266 3,32710
2,93600 " T3, 6853 3,06082 " TY 58877
3216264 3,80877 3,26679 3,78150
T3,35183 777404988 T 3.435(3 -3 ysger-
3,50232 4,17313 3,56998 4,09777
T3,534367 C a,18026 T 3)58862 " WeTIOI0
3.57185 2,16733 3.57185 4,16733
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Table 3. UIW Fan Rotor ™ade Coordinates (Continued).
SECTION 2 RADIUS 76.2 em (30.0 in.)

Convex Concave_
2LfoiaI) Y X (Axial) Y
»3,53096 »3,78711% «3,53096 as 78711
“3’.53‘751‘"_“3”772(9 ) SUIZV FL
»3,.53964 *3 74671 «3,48973 -3 78440
‘“3“53068 e “‘3*71[17 “”;x.a57a7“‘*‘* S
«3,51173 »3,6662S «3.41950 03 73590
w3, A819G *‘“*3"31257"‘—“ﬁar -

3,44093 «3,55049 *3,32533 -3.63779
"3—38v36“‘“““‘r‘179an -3;26575 T «%, 87053
®}, 23593 3 ,27513% »3,10711% «3,37975
w3, 06179 —“'“S < U508 =N 9nU¢ -3. 16812
w2,88750 2,83311 -2.73667 .2,96328
w2 TISIU T eZiB2(19 —v2 55163 S2, 75016
»2,53857 =2,814a21 -2.36672 *2,5697a
Br_mvr“-zgnﬂ“_“?z 6195 a2 . 37919
2, 189114 ~2,01213 *1,99731 ' e2,19170
_*1,97915 =1,77680 _=1,77595 v1,96984
»{,756893 «{,.54478 ‘i, Sfaaa 1,750
»],55840 ef,31538 v1,33404 wl,853261%
.‘.3"52-- -l.OB@OS -1:f1360 'f.w
w].13622 .0 ,86234 w0,89358 =],09966
@0, 92485  ap «083802 T ap o074 T a0, 88369
®0,71217 «0,481484 *0,45408 «0,66769
®0,49933 " T w0 ,19287 " ©0,23650 " «0,45148
=0,28588 0,02855 «0,01862 =0,23502
‘io;o7178““““b 28883 T 19BA0 T T @0, 01830
0,14300 0,46807 0,41515 0,1985S
T 0,35858 ~ ot 168608 " Tg, aSoos’ 0,415337
_9.,57513  0.90231 _0,84567  0,63193
0,79303 11,1162 ’1;0500V"‘ 0,04874
1,05230 1432693 1,27115 1406331
‘_7}2328f'““"I;Sldli‘_'"“1”53163 T T . 2787%
1,45459 1,73698 1,69151 1,048777
L, 6TTAS T T T 9348 1 56967"' ‘“T;IUSBU‘
1,90130 2,12710 10745 ~~ 1,89976
2,12599 2031301 a‘?laor TT2,09936
2435136 2,89202 .2,52003 ~ 2,29388
2.57T722 "‘2“36361 ""2’72509 T 2,482T6
_2,80339 2,8273% 2,93065  2,665853
3,02965 73, 98231“‘ 3,1357% 2. 8417y
3,25581% 3. 12995 3 saoas 3,01103
T 6d807 3”205¢F““ Y, 51206’ ““!:IICSV‘
3,59086 3,33233 3. 64590 3,24884
T 3,52375 3‘330«1 R "’3.63&35‘““‘ o 3
3,65778 3. 31641 3,65778 3,3164}
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Table 3. UTW Fan Rotor Blade Coordinates (Comtinued).
SECTION 3 RADIUS 66.8 cm (26,3 in,)
Convex Concave
X (Axial) Y X (Axial) Y
=3,84902 «3,03130 »3,849¢2 «3,03130
«3,45831° " T3, 01728 T «3,43399 =3,03620
=3.,45564 =2,99433 «3,41140 «3,03192
@3, 48652 T =2,96289 T T eI IBIVO T =3 01797
=3,42827 ®2,92354 =3,345484 =2,99392
=3 ,40027 Te2,87680 " T Te3_ 30309 =2, 95936
=3.,36226 =2 . 82288 =3,25468 «2.91428
"e3,31882 7 =2,76130 «3, 19940 -2, 85937
=3 15984 =2.,56706 =3, 02637 =2,68941
“2,99245 T e2,36411° TT=2,B8378 =2,
»2,82463 =2,16755 =2,64974 «2,33963
*2.,69638 ey 97693 T =2, eg,
~2,48767 01.79113 w2,27486 =2,03442
T®2,31848 T -] 61'[5!“"““7.‘683‘{‘"""‘””5“6—
=2,14878 -], 43584 " ol L9019 =] -], 70781
»f 94447 1, 23052 -y 61912 -1¢53056
-1473937' T T ey, 03059—“' -, 657 e T e, 35712
nt,53340 =0, 63559 o], 23598 =1,18674
w].3265) "-6."6451'3"—' =y, 0137" «{, 01875
“1,11859 w0,85896 -0, 279658 =0,85274
*0,90058 ~ "=0,27691 w0, 57555’ T Te0,68827
»0,69938 «0,09890 -0, 36159 «0,525%522
~0,48796 ~ 0,07507 w0, 14506 «0,36339
-0,?7532 . 0,24498 0 06656 . =0,20265
=0,06144 0,41083 0 28176 «0,042914
0,15371% 0!57254_ 0 0931} 0,11595
0457024 " 0,7%003 0, 70031 0,27396
0,58823 0,88309 0. 9!302 0-43096
0,80777 "1.63102'””m""1;125§3'*“___0}53571_
1,02884 1,17467 ) _}.!2702 0.70966
"1,25131 T1.31237 0 T 1,S3166 0,89 e227
1,47503 1,44402 1,73504 1,041018
1,69984 1,56905 — 1,93733 1.,18636
1,92553 . 1,68698 4 Jl}3875 1.,32781
" 2415181 79732 2,33957 1,86492
2.376838 1.89976 2 500!0 1,59735
2,60492 T 1,99412 T 2, HiaveT 1,72484
2¢ 63111 2 08047 ] 9“159 1,8473}%
‘3,05681 2 15004 3 !0299 1,964860
5.20185 2, 22966 3. 30505 2,076414
TT3,46868 2 ’25306‘_ -y Sﬁt‘l 2.16531
3.61268 2,.,32088 3, 64570 cel3tes
"3,683485 T 2, 3!801"'“"‘ 3, 65867 Qe 25485
3,06937 e, 29101 3,66937 2,29101
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Table 3. UTW Fan Rotor Blade Coordinates (Continued).

SECTION 4 RADIUS 57.2 cm (22.5 in.)
— Convex Concave
_X (Axial) Y X (Axial) Y
»3,27656 =2,27702 »3,27656 *2,27702
Tw3,28322 #2,26219 T =3,26204 T =2,28303°
»3,28186 «2,24050 «3,23980 =2,28070
T®3,2T207 T T w2,21053 7 T «3,21007 T w2, 28971
~3,25332 «2,17344 ©3,17355 *2,24967
~@3,22543 T e2,12958° T T 3, 13034  «2,22029
=3,18733 «2,07922 «3,08018 -2,18164
@3, TAVUY T w2, 02{B8 T e3,02260 w2,13346°
=3,00531 1 ,86253 «2,86579 =2,00785
w2, 84845 =1 ,68435 "@2,6B165 T TSI, B652T
“2,69081 =1,51211 -2,49829 -1,72907
TWZ,53231° eI 3ASAB T =2,31578 7 =1,598863
"2,37289 «1,18419 «2,13420 =],47341
W2 ZT2A4 T e, J02A0Y T ef,95360 T w[,35305
»2,05092 «0,87713 -1,77416 »1.23720
=1,85563 ~ =0,70271 = «1,56025 =1,10369
=1,6586b «0,53560 »1,.34800 =0,97568
»1,46005 =0,37578 »1,13742 *0,85208
T@1,85975 7 T «0,22324° 77T «0,92852 7 =0,73820°
~1,05776 =0,07797 -0,72130 ~0,61984
®0,8%414 7 0,06003 T «0,51571 =0 ,50°17
®0,64895 0,19075 «0,31170 =0,40182
T®0,448225 T 0,31420 «0,10920 T «0,29746
(,23413 0,43043 0,09188 =0,19578
Tn0,02466  0,%3944 0,29162 =0,096%3
0,18612 0.64822 0,49005 0,00047
T0.,39614 T T 0,73569 T T 0,68723 T 0,09543
0,61134 0,82282 0,88324 0,18838
TT0,825%57 T 0,902% 7 T 1,07821 7T 0,27929
1,04070 0,97480 1,27229 0,36809
TTE,256%2 7 T T1,03950 T 1,46567 T 0,45467
1,47281 1,09659 1,65858 0,53892
TT1,68933 T 1 14604 T T T1,8512867 7 T 0,62070
1,90583 1,18789 2 04397 0,69984
TT2.18215 7 122220 2.236R5 T 0,T760%
2,33818  1,24891 2,45003  0,84904
T2,55368 $,26786 2,623713 0,91817
2,76842 1,27875 2,81820 0,96277
2,98190 1,28127 3,01392 1,064212
3,19369 1,27534 3,21134 1,09559
TT3,36866 7 T T ,2604000 3,377 T 1,13821
3,5034% 1,25130 3,50742 1,16266
TT3,52868 T T71,24005 T T 3,53283 fo17758
3,54352 1,20850 3,54352 1,20850
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Table 3. UTW Fan Rotor Blade Coordinates (Concluded).
SECTION 5 RADIUS 44.7 cm (18.8 in.)
Convex Concave
X (Axial) Y X_(Axial) Y
-2 99111 =], ,53332 -2,99111} e],53332
g, 99661 w1, S1937 T T eg, 1,
=2.99415 »1.,49848 =2,95672 *1,53986
w9834 ST ATI01TT T2, 92617'“““"717532U5‘
2,96398 o). 43741 -2,89242 -1,51649
=2 93587 — =, 39809 2. 84966 ST 49292
=2,89777 ) ,35321 -2,79978 »1,86849
izisstza“ -T:IUZZV“’"”“&ZIT¢206 «{ 42298
w2, 74616 »1,19129 =2,62085 f,34350
2,604 - ——=2075456 T, 23970
2,46249 e0,9101% »2,28934 o), ,14224
7315/ ) Sl 06;77783“““—”2?T2523‘_’“"T‘USUEZ_
2,17438 «0,65084 e1,96226 =0,96435
w2 02861 w0, 52907 -1.BUUII U,
“=i,808167 «0,41240 «1,63979 =0,80592
=1,70357 «0,27903 _g;laaa7e_____:o.7tggv
{52347 0, IS”GZ »1,25975 «0,63765
~1,34115% ___-:9_"03452_._ -1___07296 “0,56178
=, 15662 0,07596 =0,88837 «0,89114
®0,97013  0,17822 __.0;70574 =0,42527
=(G,78186 0,27207 »0,52490 -0.36372’
-0,59214 0,35744 =0,34551  =0,30%93
=0, ao:ov 0, asasv -0, 167«0 =0,29{40
.:9_399_52__ 0,50299  0,00941 = =0,19998
“0,01449 o, 56305 0, 13419 =0,15156
wo,_wxzo ____«__,o_lbsazr____ 0,35762 ~0,10623
37827 0,6560 0, *53966 6.06003“
o 57603 0, 68809 0, 70!02 =0,02487
"F“TTJGB“"““‘O Tioi® o 87215“‘”‘"‘6 01129
JJ.“?L,_ __QJZ??.Q ~ ”_.,_1__0_“3?,“_ .0 0““3
1,16778 0,72543 ~ T i, 21662 "‘5;6752‘”
_1.363}3 9.71917 1.}9038 0.,10335
TS5 0,70473 0 1,585a6° 0,12878
__1.70?!00_____o!§8132 i 1,74201 0,15192
193060 0,65140 1,92026 0,17148
2412950  0,61378  2,10047 0,18861
2.316%4 0,56974 2.;3255 0,002%9¢
2,%0190 ~_0,51979 2,46631 0,21426
T2.68565 T 70,4603 7 "2, 55r37““*“6‘222!5‘
2,86787 0,40358 2. 03057 0,22666
“3,008%6  ),34898 2, OOSEU "‘"‘F‘i?oet
3,13513 030388 3 10630 0,22470

3, TSUUV"‘""_”D'25737*—"_—“S“TIV!V“”“""°U_22753”

Je106082

o 0.25675

3,16082

0,25675
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configuration (such as reduction in the tip chord or a reduction in blade
number) to reduce the hub thickness-to-chord ratio to 0.10, a value more
representative of past experience.

2.7 CORE OGV DESIGN

A moderately low aspect ratio of 1.3 was selected for the core portion
OGV to provide a rugged mechanical system. This selection was in recognition
of the potentially severe aeromechanical environment (i.e., large rotor wakes)
of the core OGV because of its small size in relationship to that of the rotor
blade. A solidity at the ID of 1,65 was selected to yield reasonable levels
of diffusion factor, Figure 1{0. The number of vanes which resulted is 96.
Radial distribution of total pressure loss coefficient, diffusion factor,
Mach number, and air angle are presented in Figure 10.

Profiles for the core portion OGV are a modified NASA 65-series thickness
distribution on a circular-arc meanline. The incidence angle over the outer
portion of the span was selected from a correlation of NASA low-speed cascade
data. Locally, in the ID region, the incidence angle was reduced C.07 radian
(4°), This local reduction in incidence was in recognition of traverse data
regsults on other high-bypass fan configurations which show core stator inlet
air angles several degrees higher than the axisymmetric calculated values.,
The deviation angle was obtained from Carter's Rule as was described for the
rotor blade, but no empirical adjustment was made. The resulting incidence
and deviation angles and throat margin are shown in Figure 16. The throat
area for the selected geometry was checked to ensure sufficient margin to
pass the design flow. The minimum margin relative to the critical contrac-
tion ratio was 6%, which is sufficient to avoid choke. Resulting geometric
parameters for the core OGV are presented in Figure 17. Figure 18 is a
cylindrical section of the core OGV at the pitch line radius. A tabulation
of the coordinates for this core OGV is given in Table 4.

2.8 TRANSITION DUCT STRUT DESIGN

The transition duct flowpath is shown in Figure 19. The ratio of duct
exit to duct inlet flow area is 1.02. There are six struts in the transition
duct which are aerodynamically configured to remove the ".105 radian (6°) of
swirl left in the air by the core OGV's and to house the structural spokes of
the composite wheels (see Figure 2). In addition, at engine station 196.5
(Figure 2), the 6 and 12 o'clock strut positions must house radial accessory
drive shafts. The number of struts and axial position of the strut trailing
edge were gelected identical with che F101 engine to minimize unknowns in the
operation of the core engine system, Axial position and thickness require-
ments of the composite wheel spokes were dictated by mechanical consider-
ations. The axial location of the strut leading edge at the OD was determined
by its proximity to the splitter leading edge. At the OD flowpath, the strut
leading edge is 17.8 mm (0.7 in.) forward of the wheel spoke. A relatively
blunt strut leading edge results from the 26.7 mm (1.05 in.) wheel spoke
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LE

Axial Direction

Figure 18. Cylindrical Section of Core
OGV at the Pitch Line Radius.
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Table 4. UTW Fan Core OGV Coordinates at the Pitch Line

Radius,
Convex Concave
X (Axial) Y X (Axial) Y
=0,842769 0.477539 =0,842769 0.477539
=D,842102 . 0,478085 _  =0,843493 0,%76788
-0,841193 0,478426 -0,84337% 0,47583¢
=0,840041 0,478562  =0,843303 _ _ 0,474671
-0,838648 0.478489 -0,842988 0.473308
=0,837016 _ 0,478207 _=0,B42422 D, 421747
-01835148 004777&3 '0084160‘ 01469990
-0,833043 0.,477005 _-0.B40531 _ 0,468p41
-0,830706 0.476081 =0,839199 0.465902
=0,825930 0,473879 =0.,836147 0,46158¢4
=-0,81682% 0,466976. _  =-0.829978 __ 0,453512_
=0,795126 0,455609 -0.811971 0.434789
“0.7526648 0.,428386_  =0,775318. __ _0,39926%
=0,710699 0,401338 =0,737917 0.,36547%4
-0,668893 . 0.374802_ _ =0,698908_  0.333049_
-0,585404 0,323526 ©0.619675 0,274892
-0,501676 0,274929 _ =p,538221 _ _ 0,215493
-0.,417507 0,229049 =0,454815 0.162726
=0,33277y 0.185866  _=0,369635__ . _0,114358
«0,247368 0,145345 =0.282819 0,07000%
-0,161246 0,107397 . =0.194455__ __0,029663
-0,074357 0,0719¢09 ~0.104411 -0.006547
0.013395 0,038873 ___=0.013395_ __ =0,.038873__
04102065 0,008204 0.079131 ~0,067022
0:1917R7 =0,019959 02172840 __ __=n,0911%6
0,282669 -0,045471 0.267634 «0,111499
0,374803 -0,068200.. . 0.363446 ___ -(0,128002.
0,468270 -0,087992 0,460225 ~-0,14076¢
0,563146 ~0,104640 0:557937__ _.~0,149878.
0,659491 -0,117933 0.656974 ~0,155395
0.757358 =0,127551 0,756449__  =0,157452
0,856774 ~0,133069 0.856712 «-0,156245
0,876843 -0,1336p2 0.876951_ _ _-0,.59667
0.896972 -0,133921 0.897236 -0,15490%
0:917161 ~0,134016 0,917569 _ _ -0,1%94238 _
0.9374006 -0,133872 0.937951 ~0,153407
0,948266 -0,133695 -0.948880____ -0,1%929368
0,954694 -0,136013 0.959078 -0,150279
0,958048 =0.142994 _ _0.958048_ _ _~0.1429%¢
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thickness raquirement. The wheel spoke is radial. The axial lean of the
strut leading edge provides relief from the LE bluniness at lower radii and
makes the LE approximately normal to the incoming flow. Since the inlet

Mach number in the OD region is less than 0.5, and since the boundary layer
along the outer wall initiates at the splitter LE, no significant aerodynamic
penalty was assessed because of the bluntness. A NASA 65-series thickness
distribution was sele:ted for the basic profile thickness .hich was modified
for the special considerations required in this design. The strut thickness
is the same for all radii aft of the forward wheel spoke LE (Figure 19) tc
facilitate fabrication. A cylindrically cut cross section showing the nominal
strut geometry at three radii 2. shown in Figure 20. The thickness distri-
bution for the 6 and 12 o'clock struts was modified for the envelope of the
radial drive shaft. Cylindrically cut cross sections of these stiuts are alse
shown in Figure 20. The forward 40% chord of these modified sections is
identical to that of the nominal strut  cometry. Aft of the forward wheel
rsoke LE, the strut thickness is the same for all radii. The core engine has
demonstrated operation in the presence of a similar thick strit in the F101
application without duress.

2.9 VANE-FRAME (FAN 3YPASS OGV) DESIGN

The vane-frame performs the dual functioan of an outiet guide vane for the
bypass flow and a frame support for the engine components and nacelle. It is
a common piece of hardware fur both the UTW and OTW engine fans. It is inte-
grated with the pylon which houses the radial drive shaft at engine station
19¢.5 (see Figure 2), houses the engine mount at approximately eugine station
2190, provides an interfoce between the propulsion system and the aircraft
system, and houses the iorward tarust links. Furthermore, the vane-frame acts
as an inlet guide vane for the UIW fan when in the reverse mode of operation.

A conventional OGV system turns the incoming flow t> axial. Housing
requirements of the pylon dictate a geometry which requires the OGV's to
underturn approximately 0.174 radian (10°) on ore side and to overturn
approximately 0.174 radian (10°) on the other side. The vane must be tailored
to downstream vector diagrams which conform to the natural flow field around
the pylon to avoid creating velocity distortions in the upstream flow.

Ideally each vane would be individually tailored. However, to avoid excessive
costs, five vune geometry groups were selected as adequate.

The Mach number and air angle at the inlet to the vane-frame (fe-~ bypass
OGV) are shown in Figure 21 for both the UIW and OTW fans. In the ou.er por-
tion of the bypass duct annulus, the larger air angle in the UTW environment
results in a less negative incidence angle chan for the OTW environment. Mach
number in the outer portion of the annulus is also higher in the UTW environ-
ment. When selccting incidence angles, a higher Mach number environment nat-
urally leads to the desire to select a less negatlve iucidence angle. The
amount by whkich the incidence angle would naturally be increased due to the
higher Mach nunher UIW environment is appruximately equal to the increase in
the inlet 21 angle of the UTW environment. In the inner portion of the annu-
lus, the inlet Mach number and air angle are higher for the UTW environment.
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The natural increase in incidence angle desired because of the higher Mach
number is approximately the same as the increase in the inlet air angle. As
s result of these considerations, no significant aerodynamic performance pen-
alty is assessed to using common hardware for both the UTW and OTW fans.

Locally, near the bypass duct ID, there is a discontinuity in the aero-
dynamic environment of the UTW configuration. This discontinuity represents
that portion of the flow which passes under the island but bypasses the
gplitter. The calculation ignored mixing across the vortex sheet. In the
design of the vane geometry, no special considerations were incorporated be-
caugse of this discontinuity, since it is believed that in a real fluid the
mixing process will greatly diminish the vortex strength.

The vane chord at the OD was selected largely by the mechanical require-
ment of axial spacing between the composite frame spokes. At the ID, the
vane leading edge was lengthened primarily to obtain an aerodynamically
reasonable leading edge fairing on the pylon compatible with the envelope
requirements of the radial drive shaft. The ID region is significantly more
restrictive in this regard because of choking considerations, particularly
for the OTW enviromment, with the reduced circumferential spacing between
vanes. The solidity resulting from 33 vanes, an acoustic requirement, was
acceptable from an a.rodynamic loading viewpoint as shown in Figure 22. The
two diffusion factor curves are a result of the two aerodynamic environments,
UIW and OTW, to which the common vane frame geometry is exposed. The thick-
ness is a modified NASA 65-series distribution. Maximum-thickness and
trailing-edge thickness-to-chord ratios of 0.08 and 0.02, respectivelv, were
selected at the OD. The same maximum thickness and trailing edge thickness
were used at all other radii which results in maximum~thickness and trailing-
edge thickness-to-chord ratios of 0.064 and 0.016, respectively, at the ID.

As a guide in the selection of the overall vector diagram requirements
of the vane-frame, a circumferential analysis of an approximate vane geometry
(including the pylon) was performed. This analysis indicated, for uniform
flow at vane inlet, that the vane discharge Mach number was approximately
constant circumferentially and that the discharge air angle was nearly linear
circumferentially between the pylon wall angles. Figure 23, an unwrapped
cross section at the ID, shows the flow field calculated by this analysis.
The specific design criteria selected for the layout of the five vane geom-
etry groups were to change the average discharge vector diagram with zero
swirl to vector diagrams with + 5° of swirl and * 10° of swirl.

The meanline shapes for each of the five vane groups vary. For the vane
group which overturns the flow by + 10°, the meanline is approximately a cir-
cular arc. As a result of passage area distribution and choking considera-
tions, the meanline shape employed in the forward 252 chord region of this
vane group was retained for the other four groups.

The incidence angle for all vane groups was the same and was selected
for the group with the highest camber. A correlation of NASA low-speed cas-
cade data was the starting point for the incidence selection. Over the outer
portion of the vane, where the inlet Mach number is lower, the incidence
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angles were slanted io the low side of the correlation. This was done in con-
sideration of the reverse thrust mode of cperatiou for the UIW fan. In this
mode, the OGV's impart a swiri counter to the direction of rotor rotation.
Additional vane leading edge camber tends to increase the counterswirl and
therefore increase the pumping capacity of the fan in revers:. In the inner
portion of the vane, the incidence angles are higher than suggested by the
correlation because of the higher inlet Mach number. Also, in the reverse
mode of operation, this reduction in vane leadiag edge camber in the ID region
reduces the swirl for that portion of the fluid which enters the core engine
and tends to reduce its pressure drop.

The deviation angle for each of the five vane groups was calculated from
Carter's Rule as described for the rotor. The portion of the meanline aft of
the 252 chord point approximates a circular arc blending between the front
circular erc and the required trailing edge angle. For the vane group which
underturns the flow by 10°, the aft portion of the blade has little camber.
Figure 24 ghows an unwrapped cross section at the ID of two of the 10° over-
cambered vanes and two of the 10° under cambered vanes adjacent to the pylon.
Note that the spacing between the pylon and the first under cambered vane is
J0% larger than averages. This increased spacing was required to open the
passage internal area, relative to the capture area, to retrieve the area
blocked by the radial drive shaft envelope requirements.

Table 5 gives the detailed coordinate data for the two vane geometries
and the pylon leading edge geometry shown in Figure 24. The coordinate data
for the nominal vane geometry at three radial locations are :1so given in
this table. The vane coordinate data are in inches.

Radial distributions of camber and stagger for the nominal and two ex-
treme vane geometries are shown in Figure 25. Radial distributions of chord
and solidity for the nominal vane are shown in Figure 26. The design held
the leading and trailing edge axial projecticn common for all five groups
vhich results in slightly different chord lengths for the othker four vane
types.

2.10 FAN_PERFORMANCE BASED ON SCALE MODEL TESTS

Aerodynamic performance data in forward and reverse thrust modes were
obtained from a 50.8-cm (20-inch)-diameter scale model of the UTW engine fan.
This simulator had adjustable-rotor blades, allowing forward fan performance
to be measured at the design stagger angle and with the blades opened 5°
and closed 5° from the design forward value. Complete results of these tests
are described by Giffin, et. al.,* and key results relating to the adequacy
of the fan design for use in the UTW engine are presented in this section.

*

Giffin, R.G.; McFalls, R.A.; and Beacher, B.F.; "Fan Aerodynamic and Aero-
mechanical Performance of a 50.8-cm (20-inch)-Diameter 1.34PR Variable Pitch
Fan with Core Flow," NASA CR-135017, 1975 (to be published).
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Table 5. Vane-Frame (Fan Bypass OGV) Coordinates.
Vane Type: Closed 2 (~ +10°)
Radius 53.0 cm (20.86 in.)
convex Concave

X (Axial) Y X (Axial) Y
=b,48210 .. 2438116 -5, 08210 . 2434116
=6,48759 2,32790 w6, 47014 2.,34917
~6,48654 2.,30949 -6,45181 2,35184
b U787 2,28616 -h,42730 2034886
=6,046396 2,25823 -6,39677 2.36011
“b,44206 2,22584 -6,36025 2,32555
=6, 41331 2418867 «6.,31735 2.30561
ob429919 2,05618 =b,16591 2,22947
=k, 074419 .1,85449 S B94RD 2,07990
«5,83097 1.6383% e5,63592 1,92961
=5,58939 _ 1,45347 «5,37839 1,79199
=5 ,34632 1,27982 =5,12236 1.,66526
*5410018 1.13977 -l 86939 1,54502
»l 85192 0.,97171 =4 ,61855 $1,43098
»l,60258 0,83339 4 ,36878 1,32361
_=4,30233 - 0.,67897 vl ,07018 . . 1,20263
=4.00106 0,53%619 ©3,77245 1,08890
_»3,69886_ 0,40428 w3 47572 . 098129
©3,39590 0,28251 “3,17976 0,87882
_»3,09242. 0.,16966 -2, 868431 0,78408
-2,78889 0,06546 n?,58892 0,68742
_=2,48547 =0,0311% »2,2934} 0.59624
=2,18202 =0,120%6 ~1,99793 0,50613
_=1,87857 -0,203R9 =1,70246 0.41663
=],57498 «0,28229 -] 40712 0,32765
1427310 .  _«0,35637 ~1,11208 0,23941
*0,96707 *0,48265% -0,81718 0,15212
=0,66307 «0,89346 ~(,%2225 0,06612
=0,355916 «0,5975%4 ~0,22724 ~0,01841
=0,0552}) =0,61845 0,064774 =0,10206

0,24894 =0,67585 0,362%% »0,108531

0,85774 -0,78128 0,95157 “0,34873
1416223 =0,82964 1,24600 «0,42780_

1,46682 *0,87488 1,54034 =0,50454
_.1aTT16) =0,91602 1,83448 =0,57877 .

2,07653 =0,95211 2,128438 =0,65013
2238133 ~0,98311 2,42260 *0,78727

2,68%57 =] 00936 2,711719 «0,77845%
— 0198924  wi,03206 3.012%% . . «0,83151 .

3,28155 »].04887 3,.259134 »0,086832
_3,011)) _ =1,05853 . 3,42574 ___ _*0,88974

3,06658 ©1,08155 3,47884 *0,91753

3,50000 »(,98095 3,50000 «0,98095__

I
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Table 5. Vane-Frame (Fan Bypass OGV) Coordinates (Continued).

Vane Type: Pylon Leading Edge
Radius 53.0 cm (20.86 in,)

Convex Concave

X (Axial) Y X (Axial) Y
b, uBy32 2,39154 -6,48132 2:39154.
.6,48473 2,38081 w6,47148 2,39700
“6,48161 2,36491 “6,85525 2,39712
=b,47179 2,34406 -b,43279 2.39473
-6,45509 2,31849 -6,40420 2,38068
=6,43104 2,28828 -6,36944 2,36408
=6,28510 2.,12434 vb,17848 2,26374
.6,06174 . 1,89820 _ «5,90277 . 2,12120
=5,82801 1,69438 «5 63744 1,98182
=5,58938 . 1,50620 «5,37700 _ __ 1,85097.
=5,35069 1,32592 »5,11662 1,73488
5.11131 1,15379 «4,85694 _  1,63146
=4,86999 0,99435 4 ,59920 153737
" ,62695 0,83784_ el 34317 . 1,45194
~do3335¢4 0,66380 «4,03770 1,36062
~4,03838 0,49997 -3,73397 _ . 1,28070.
w3, 74142 0,34566 =3,432006 121133
=3,44249 0,20051 . ~3,13211 _ _ 1,15184
»3,14194 0,06430 »2,83378 1,10452
=2,84029 =0,06372 = «2,53655 . 1405974
72,53881  =0,18441 .»2,23985 1,02%84
»2,236014 =0,29878 ey, 94307 0,99894
®1,93375 . ___=0,40770 _ . ei,64646 _ __ _0,97830
»1,63088 =0,51445 »1,35045 0,96310
-"1432T13 .*0,60978 «],054531 . . 00952414
wi,02219 =0,70205 w0,76138 0,94519
-®0e71647. .. =0,78789. .  =»0,46851. . 094075
«0,40945 «0,B6R65 =0,17635 0,94005
0410190 . »0,94573 0,11497 0.94418
0,20685 v, 01906 0,40510 0,95304
0,82574 -1,15361 0,96398 0,98345
1413505 . =1,21%46 1.27354 .1,00450
1,4440% -1,2738% 1,56343 1,0287
—.1473876 _ . =1,32623 2014355 . 1.08453
200335% *1.37574 2.,44720 1.11734
3.50000 -1.64800 3.50000 1.20800
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Table 5. Vane-Frame (Fan Bypass OGV) Coordinates (Continued).
Vane Type: Open 2 ¢~ -10°)
Radius 53.0 cm (20.86 in.)
Convex Concave
X (Axial) Yy X (Axial) Y
~6,4824 2.3%116 ~6.48249 2,34116
=6, 48759 T2.%279% =6:147013 T 7 2,54918
~6,48653 2,3095¢ v6,4518p 2, 35183
~6,47873 2.20619 ~6,42726 203489
~6,46391 2.25830 ~6,39669 2,34021
~6,44195 - 2,22597 -6,360¢8 T 2432574
~6.:41309 2,18893 <6,31705 2.30598
~6,29837 2.05743 ~6,16673 2023191
~6.06881 1.84033 -5,89749 2.0888
~5:82663 1.65165 "7 _5,44026 71494846
5158259 1.47748 -5,38549 1182404
=5,33663 1,31730 "7 _5,132p5 - 1471340
~5.,0874¢ 1:273543 -4,88217 1061171
~4,8359, 1.04408 ~4:,63456 © 4 ,51047
-4,58347 "0}92682""""":4736519"“"‘“”1;;34§5‘
~4,27866 0,80069  _4,09378 1134319
=3,97293 0,689417"" "_3,80058 1’26249
~3,66610 0,59230 -3,50849 1,{9083
-3,35833 0,50871" =3,21733 77 4 {2737
=3,N04985 0,43788 ~2,926%8 1407194
~2:7410% 0,37947°"°  22,63674 1,02425
'2,43218 0.33%3258 .2.34670 0.98319
"2:12344 0,29797 " _2,05652 - " 0.94770
"1:81541 0,27447 -1,76592 0191756
~1.50737 0,26103 - ~1,47473 - 0,89269
=1,20933 0,25681 -1,156284 0:87302
~0.89392 0,26100° -0,89033" - 0485854
~0,58804 0,27293 ~N,59728 084962
=0:,2827% 0,29247 ~0,30349 " 0:84652°
0002205 0.31915 -0,00952 0:84873
0432598 n,35420 0,28547 0:85578
0062892 0,39664 Ny58146 0186776
0:93104 N, 44568 0,87827 "0.88487
1:23245 n,50099 1,17578 0:90731
1.53315 0,%6243 1,47401 " 0,93516
183305 0,83035 1,77304 0196799
2:13206 0,70498 2,07295 1.00552
2143030 0,78549 2:37364 1004842
2:72800 0,87088 2,67486 © 1409772
3.02565 0095941 2.97614 1tisslo
3:27398 1.03479 3,22694 T 1420994
3144400 1.08772 3,3985n 1125063
T 3149006 " y,42317 3,45780 - — §,24330
3.50000 1449138 3,50000 1,19238
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Table 5. Vane-Frame (Fan Bypass OGV) Coordinates (Continued).

Vane Type: Nominal (0°)
Radius 53,0 cm (20.85 in.)
Convex Concave
X (Axial) _Y X (Axial) Y
b, 48210 2,34116 -6,48210 2,34116.
=6,48/59 2,32791 -6,47033 2.34918
»6,486%4 2,30949 »b,45381 2,35182
=6,47874 2,28617 -b,42729 2,34888
=6,4639¢4 2,25825 =6,39675 2.34014
=6,44203 2,22588 vb,36020 2,3256%
=b,41324 2,18874 =6,31726 . 2430572
=-h,29496 2,0564%4 -6,16614 2,23018
=b,070%4 1,A3608 -5,89545 2,08244
Y ,82960 1,6420% «5,63708 1,93498
-5,58753 1,046015 -5,38025 . 1580119
=5,3435% 1,29036 v5,12%13 1,67933
=5,09631 1,13518 -4,87326 . 1.56502
“4,84677 0,99309 »y,62370 14458013
-4,59597 0,86190 4,37539 1,3588¢2
=4,29378 0,71764 *4,07866 . .1+24915
=3,99047 0,58679 «-3,78304 1,14834
=3, 68627 0,468%2 -4,48832 1,055114
=3,358139 0,36194 «3,19426 0.96836
*3,07616 0,265%89 w2,90057 0.88755
=2,77084 0,17937 «2,60697 0,81205
=2,46%49 0,10210 =2,351339 0,74054
=2,16009 0,03377 -2, ,01986 0,67182
=1,85478 0,02657 -],72625 . 0,60556
=] ,54964 =0,07997 -i,432406 0,54168
=1424470 =0,12/20 -1,13847 0,48014
=0,93982 "0,16890 e0,844482 0,62105%
w0),63494 «0,20568 *0,55038 0,36497
=0,33012 «0,23761 =0,25628 0,31230
=0,3253% =0,26447 0.,03788 0,26268
0,27916 -0,28484 0,53230 0,21567
0,58316 =0,300¢22 0,62722 0,17134
0,88725 “0,31091) 0.92205 0,13088
1.19188 *0,31606 1,216306 0,09358
1,49640 *0,31452 1,51076 0,06272
1,80035 =0,30%47 1,80573 0,0375%
2510352 =0,288%2 2,10449 0,01793
2,40575 ©0,26457 2,39819 00,0044
2,70721 *0,23490 2.,69565 =0,002048
. 3,00816 =0,20101 2.99363 0,00087
3,2%869 =0,17029 3,20220 0,01049
3,427382 “0,14778 3,40980 0,02082
3,478S56 =0,12068 3.846729 0,00351
3,50000 *0,0%74 3.50000 -0,095474
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Table 5. Vane-Frame (Fan Bypass OGV) Coordinates (Continued),

Vane Type: Nominal 0°)
Radius 69.8 cm (27.48 in.)
Convex Concave
X (Axial) Y _X_(Axial) Y
=5,98734 _  1,85159 Lw5,58754__ _____1,85359
-5,59204 1,8%581 -5157483 1,86239
»5,58888 31,8158 5,55459_ _  1,0680S.
=5,57767 1,78979 «5,52679 1,86834
=5,55820 176037 =5,49156 _ _ 1,86305
=5,53036 1,72642 95.4“892 1,8%218
*5,0943% 1,68825 _ =»5,398%8
=5,4179% 1,61418 wy, 30236 1,80216
=5020924 _  1,44123 ®5,05678. ____1,70308
=4 ,99074 1,2891% =l 82084 1,597715
™Yo T7087 . 1414424 wl 58634 1,49961
"l 454950 1,00677 -4,353340 1,40820
_=08,32535 _ _ 0,87963 __ _ w»4,12313 132006
ol , 09914 0,76488 »3,89500 1,23567
e3,87166 0,65193 a3, 66808 1:15607
_=3,59758 . 0,52960_ . __=a3,396
. ,-3 ) 0“629 R, 0.3‘471-_“«” ..2.057—’1__ _.__Q,QQAJR-
=2,76943 0,2213% w2,5893S 0,82965
“2.49196._ _  N,13645_ ____ _=2,321858 __ 0,7593%L
=2,21403 0,05948 =2,05428 0,69304
=1,93557 . =0,00932 . e1,78749_ __ __0,62999.
»i 465657 w0, 00966 wni, 52129 0,56948
®1,37738 _ __ =0,12194 . ___ w1,25540  0,81166
=1,09766 «0,16670 «0,98968 0,85683
~0,81820Q. .=0,200440 . . w0,72390._. __ _0,00547
»0,.,53899 »0,23556 w0, 49787 035687
“0,26019_  _ _ »0,26089. . «0,19443 _ ___0,31220
_..0429653_ .=0,29522 034234 _0,23382
0,5745%8 »0,30326 0,60952 0,19928
. 0485232  _«0,30529. .. 0,87702____ -
1,12961 =0,30174 1,14497 0,14089
_. 1540634 .=0,29289 L1,041349 . ___0,11784
1.,68247 «(,27890 1,68260 0409902
- 195797 ..om0,25944 . 1,98234_ _ _ 0,08%94
2.,28282 =0,23433 2.,22272 0,07a31
.. 8450703  =0,2043% 2,49376___ __ _0,06473_
2,78065 =0,$7056 2,765%7 0,06229
..... 3,05389 . . _=0,43473 _ _ 3.,037138____ 0,06470_
3,28148 =0,10422 3.,26418 0,07633
3042738 «0,Q08386. . 340977 ___ _ 0,08830
3,47882 «0,05633 3,46708 0,0068048
_3,%0000. __0,0094%  3.50000___ __ 0,0094%



Table 5.

Vane-Frame (Fan Bypass OGV) Coordinates (Concluded)
Vane Type: Nominal (c°)
Radius 90,1 cm (35.5 in.)
Convex Concave
X {Axial) Y X (Axial} Y
=4 09480 1,64519 =4 49480 1,64519
=4,5%0141 1,62777 ey 48003 1,656141
=l ,4994K1 1.6042% =g 45704 1,660064
=4,u8913 1,57488 -4, 4260° 1,65851
-4,u6969 1.50012 -4, 3871 1,64946
=4, 4411y 1,.50020 =4 _3405%6 1.63344
.y 40352 1.45490 -4,28574 1,61098
~4,30001 1,4C640 =y 22984 1,58666
-4,1786% 1,23208 -4,0i18 1,48459
=3,9873¢ 1,080453 =3,80307 1,38218
3, 79412 0,95890 =3,59652 1.,28894
=3,59889 0,80698 =35,39201 1,20396
»3,4008% 0,68675 =3,19030 1212394
1}.20110 0.,57686 {?.99032 {04840
*3,00038 0,47518 =-2,79129 0,97765%
_=2,75845 = 0,3%6283 =2,5%383 0,89860.
=2.51%4% 0.26034 =?2.,31686 6.82511
.=2,27133 0.16734 -2,08128 0,75648
=2,02632 0,08355 -], 84660 0,69212
_=1278065 0,00833 =1,612%8 0.63195
-1|53053 '0,05&89 -1.37902 0.57580
=1,28796 =0,11786 =§.14590 0.52287
=1,04094 “0,16H43 -0,913723 0.47240
«0,79365 =0,21078 =0,68083 0,42448
=0sh4b28 =0,24%79 =0,44852 0.37939
=0 ,29894 ~0,273%78 =0,216117 0,33741%
*0405184 =0,29518 0.01642 029879
0.19482 =0,3106¢c 0,2494% 0,26389
0.4410¢ ~0,32059 0,48296 0.23289
008673 =-0,32471 0.71691 ( 10524
0,93213 =0,32276 0.,9%120 0,19045
1.17721 =3,31479 1.185%80 0,15901
§,42173 =0,30120 1,42098 0,14150
1ob606547 -0,28239 1.61692 Ge12612
1,90844 «0,25863 1,89364 0,11880
2413059 =0,22976 2.,13118 0,1129%
ce 39198 «0,19%69 2, 56947 0,11011
2,63272 =0,15716 2,.,h0BUE 0,11097
2,87313 ~0,11508 2,8d770 0,11677
3,11456 «0,07029 $,08696 0,13000
3.31347 =0,03164 3,7R679 0,14794
3,43200 -0,00R3A 3,40618 0,36054
3,48205 0,0258% S.uelyb N,14584
3,50000 0,08R54 4,50009 0,088%4
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Radius, in.
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Radius, in,
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Sufficient data were obtained to define the fan bypass and core flow
performance maps at each stagger angle. The three bypass stream maps vere
curve fit using a technique that allowed the stagger angle to be used as a
parameter along with the usual parametcrs of speed and throttle area. This
permitted convenient prediction of fan performance at any given stagger
angle by interpolation within the group of maps based upon test data. A
universal characteristic approach was tried as a means of unifying the data
obtained at different rotor angle settings in forward thrust, but was not as
successful as the curve-fit interpolation method. The curve-fit method was
in excellent agreement with the test data with respect to pressure ratio
versus flow and speed and generally fit the efficiency data within one point.

The fan bypass parformance map for the design stagger angle is shown in
Figure 27, scaled to UIW engine size but based very closely on 50.8-ca
(20-inch) scale wodel test data at this setting angle. The design point is
indicated on this figure, and comparison with the 100Z corrected speed line
shows that the fan demonstrated the design flow at design speed but was low
in pressure ratio. This is believed to be due to the rotor deviation angles
being larger than assumed during the design process. Along a fixed-area
operating line through the aero design point, the fan achieved a pressure
ratio of 1.30 and a scaled flow of 386 kg/sec (851 lbm/sec) at design speed
and nominal stagger angle. These values are, respectively, 3.02 and 5.52
less than the objectives.

The fan design point, however, was selected simply as an intermediate
point between the two critical engine operating conditions of take-off and
maximum cruise power settings; it is fan flow and pressure ratio at these
conditions that must be met in order for the engine to meet its thrust goals.
The variable-pitch rotor and variable-area bypass stream exhaust nozzle
features of the UIW fan allow these objectives to be met even though the
design point was not achieved. In particular, the variable-pitch feature
results in better overall engine system operating characteristics than would
have been possible if changing only fan speed and nozzle area were used to
reach these fan operating conditions. Figure 28 shows the estimated fan
performance map at the maximum cruise condition. In this case, the flow of
405.5 kg/sec (894 lbm/sec) and pressure ratio of 1.38 required to achieve the
thrust goal are achieved at a corrected speed of 1097 and a stagger angls
adjustment of --1.4° (open). The estimated efficiency at this condition is
0.211, about the same as would be obtained at nominal stagger by running the
fan at 1122 speed. The lower-spe~d, open-stagger setting vas selected in
order to stay below a phya. :al speed limitation on the fan drive turbine.

Similarly, the estimated take-ofi condition fan perfomance map (Figure
29) shows that for a fan stagger angle adjusteent of -3° (open), the required
fan flow of 405.5 kg/sec (894 lbm/sec) and pressure ratio of 1.27 are schieved
at 952 corrected speed and an efficiency of 0.833. This sfficiency is lower
than the value of 0.86 achieved at 100X speed and nominal stagger angle, but
the lower fan speed is needed to reduce engine take-off noise to objective
levels.
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For purposes of describing estimated full-scale engine performance, the
fan kub performance data from the simulator fan tests were expressed in the
form of modifying factors applied to the bypass stream performance maps. The
fan hub pressure ratio is found as a function of bypass stream pressure ratio
as shown in Figure 30. This curve is an average of numerous data points at
various throttle settinge, rotor stagger angles, and spzeds. In general, the
fan hub pressure ratio at a given bypass pressure ratio slightly exceeds the
objectives, assuring that the core engine will be adequately supercharged by
the fan. Fan hub efficiency is related to bypass stream efficiency according
to the relationship shown in Figure 31. Along a reference constani-throttle-
arca operating line passing somewhat below the design point, having a throttle
area parameter of 1.3.. the hub efficlency is a frction of corrected speed.
At a given corrected speed, the hub efficiency varies from its value at the
reference operating line according to the variation in throttle area. These
curves also are composites of a large number of data points. As mentioned
Ly Giffin, et al., the fan hub efficiency exceeded the objective value at
design speed with the nominal rotor pitch setting.

Performance in the reverse thrust mode of operation was determined for
several rotor angle settings during the 50.3-cm (20-inch) scale model fan
tests, and is discussed in detail by Giffin, et al. Pressure ratio and effi-
ciency data are shown in Figure 32, plotted versus flow in the 50.8-ca (20~
inch) scale mudel size. In UTW engine size, the resulting trends of gross
corrected fan reverse thrust versus fan corrected speed are shown in Figure

- 33. The general conclusion from these data is that reverse thrust objectives

can be met with the rotor blades reversed through stall pitch, but probably
not when reversed through flat pitch. Engine system cycle analysis, uowever,
is required to evaluate effects of bypass duct/core engine inlet duct recov-
eries on available core engine power and achievable fan speed before deter-
mining the best pitch angle setting for reverse thrust.

The test data recorded in reverse thrust mode wersz expressed in terms
of a universal stage characteristic. A work coefiicient, defined in Figure
34, was calculated involving a correction for rotor stagger angle variations
such that this coefficient represents the work input that would have been
produced if the rotor had always been set at a nominal stagger angle rather
than at the angle for the particular data point. Similarly, a flow coeffi-
cient, defined in Figure 34, was calculated to represent the flow that would
have been passed at the rnominal rotor angle setting, for the same incidence
ac the actual test data point. Two such characterisiics were actually ob-
tained, one for reverse through scall pitch and one for reverse through flat
pitch. The stagger angle settings used as normalizing values were ~100° and
+73° for reverse through stall pitch and flat pitch, respectively. The re-
sulting characteristic curves are shown in Figure 34, while the trends of
etficiency versus speed and stagger angle used to represent the reverse mode
data are ghown in Figure 35.
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Throttle Area Parameter, At

= Total Fan Corrected Airflow

Py, T, = Fan Inlet Total P>.ssure and Temperature
P2/Pl = Fan Bypass Pressure Ratio

n

Fan Hub Efficiency = WH = UF - A‘ - A

Figure 31.

F

= Fan Bypass Adiabatic Efficiency

2

Fan Hub Efficiency Correlation (Forward Mode),




Stage Adiskatic Efficiency, M

Stage Pressure Ratio, P;/Pj,
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SECTION 3.0

UTW _FAN ROTOR MECHANICAL DESIGN

3.1 FAN ROTOR SUMMARY

The UIW fan rotor illustrated in Figure 36 is a variable-pitch design
that offere full reverse thrust capability., The design iuacludes 18 composite
fan blades fabricated from a hybrid combination o° Vevlar-49, Type AS grophite,
boron, and S-~Glass fibers in a PR288 epoxy resin matrix. The plader incor-
porate a metal leading edg: to provide FOD and erosion protection. Solidity
of the blade airfoil is 0.95 at the OD and 0.98 at the ID which permits rc.a-
tion of the blades into the reverse thrust mode of operation through both the
flat pitch and the stall pitch directions. A spherical casing radius and a
spherical blade tip provide gond blade tip clearauces throughout the range of
blade pitch angle settings.

Each blade is .ctached to a rotor trunnion at the blade's root. The
trunn.ons are retained by the disk. Retainer straps, attached to the trumnion,
lock the blade in ax'al positicn and resist trunnion opening deflections
under blade centrifugal loading.

Cer.trifugal force of each blade and trunnion is carried by a single-row
ball thrust bearing. This bearing has a full complement of balls to reduce
the per'ball loading. The race has a much higher conformance than is stardard
for thrust . zarings because of its highly loaded, intermittently actuated
environment. The bearing is grease lubricated, with a cup sh.eld completely
covering the upper race and most of the lower race, vreventing the grease froa
leaking out rnder high radial "g" loads. This concept was successfully demon-
strated ou General Electric's reverse pitch fan. Fail-safe lubrication is
accomplished by a tungsten aisulfide coating applied to the balls and races.
Under the planned loading, thic coated bearing is capable of operating 9000
«atigine hours after loss of luuricant with only a slight increase in coeffi-
cient of friction and negligible wear. Secondary and vibratory louds from
the trunnion are resisted by dry thrus'. and jovvnil bearings located a* the
OD of the fan disk.

In a concept similar to that usedi on the CF6-50 fan, balance weights are
accessible in the fan spinner, and field balance of the fan is possihle with-
out removing the spinner. Ease of maintenance has also been considered in
the design of the other rotor components. After removal of the rotor spiluner
and the forward retaining straps, the blades can be individuvally removed and
replaced without disassembly of the blade trunnion. Access bhales in the
flange of tle aft rotating flowpath permit bolt removal to allow removal of
the fan rotor, blacde actuator, and the reduction gear as a complete subas-
sembly.
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All UIW fan rotor components arce of flight-weight design.
selections were made to satisfy life requirements with minimum weight.
flight engine design practices, including consideration of LCF life and FAA
flight requirements such as burst speed margin and bird strike capability,

have been adhered to in the rotor design.

3.2 CNMPOSITE FAN BLADES

3.2.1 Design Requirements

Design requirements for the U™ composite fan blade were established

Rotor material
Normal

to provide realistic long-life operation of a flight engine., The major design
requirements are listed as follows:

Design Mechanical Speeds

1007 mechanical design - 3244 rpm

100X SLS hot-day takeoff - 3143 rpm

Maximum steady-state duty cycle speed - 3326 rpm
Maximum design overspeed - 3614 rpm

Maximum burst speed - 4700 rpm

Design Life and Cycles

36,000 hours
48,000 cycles (based on a 45-minute mission)

1,000 ground check-out cycles, full power

Mechanical Design Requirements

Blade is capable of operation from flat pitch through stall
pitch.

Blades are individually replacecable without major teardowu.
Bladc untwist has been factored into airfoil configuration.

Stresses are within allowable atress range diagram, with
sufficient vibratory margin.

Pirst flexural frequency crosses 2/rev above flight idle and
below take-off and climb engine speeds.
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-~ First flexural frequency has greater than 151 margin over 1l/rev.
at 1151 speed.

«~ Blade nickel leading edgs protection has besn kept within aero
airfoil limits.

Of these mechanical design requiremsnts, the first is of prims importamce.
Successful operation of the experimental engine hinges to a great degree on
having 2 rugged blade which can withstand reverse pitch operation and other
inlet disturbances including crosswind testing. Initially the design require-
ments included provisions for satisfying FAA specifications for IOD resistance.
During the testing of preliminary blades, however, it was found that the blade
FOD capability was less than desired and FOD requiremsnts were dropped pending
further developments on other NASA and related prograss.

3.2.2 Basic Design Features

The UIVW composite blade {s illustrated in Pigure 37. Design features
of the blade are described in the following paragraphs.

Aerodynamic Blade Parsmeters

A summary of the azrc blade parameters is presented in Table 6.
Detailed blade aerodynamic design characteristics, including blade chord,
maximum thicknegs, stagger sngle, and camber are presented fn Section 2.0,
Fan Aerodynamic Design. The blads length, thickness, and twist geometries
are simil.c to composite blade. .ich have undergone extensive development
and proof testing on other programs.

Blade Configuration

Finished configuration of the fan blade is shown in Figure 38 and con-
sists of a molded composite blade and a molded composite platform. The molded

blade is shown in Figure 39. The platform is described in a subsequent
section.

The blade molded configuration consists of a solid composite airfoil and
a straight bell-shaped composite dovetail. The molded blade leading edge is
slightly reduced in thiciness along the entire span to allow for a nickel
place over wire mesh protection. The dovetail is undercut at the leading edge
and trailing edge to reduce local stresses and to permit better transitioning
of the cambered airfoil section into the straight dovetail.

Airfoil definition is described by 15 radially spaced airfoil cross
sections which are stacked on a commcn axis. These are shown along with some
details of the blade cross sections in Figure 40. Each section location
corresponds to the like designated elevation defined on the blade, Figure 38.
The dotted portion of the leading edge defines the aero profile and the solid
inner portion describes the molded composite cross section. Only a portion
of these sections lie below the platform, and therefore do not need to corres-
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Table 6. QCSEE UTW Composite Fan Blade Design Summary.

Aero Definition

Tip Speed
Tip Diameter
Radius Ratio
Number of Blades
Bypass Pressure Patio
Aspect Ratio
Tip Chord
Root Chord
Ty Root
Ty Tip
Root Camber
Total Twist
Solidity

Tip

Root

306 n/sec (1005 ft/sec)
180 cm (71 in.)
0.44

18

1.27 Takeoff

2.11

30.3 ca (11.91 in.)
14.8 cm (5.82 in,.)
1.92 cm (0.76 in.)
0.91 cm (0.36 in.)
66.2°

44°

0.95

0.98

Angle Change from Forward to Reverse

Through Flat Pitch

Through Stall

85°

95°
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Figure 40.

Blade Airfoil Sections.
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pond with aero defined profiles. Evosion and small FOD protectiom of the basic
organic composite material blade comsists of nickel plating on stainless steel
wire megh which is bonded onto thz molded blade and is applied to the leading
edge portion of the blade. The details of the blade leading edge protectiom
are shown on the finighed blade drswing (Figure 38).

Radial sections through the molded blade are shown in Figure 4l. Sections
correspond to the like designated locations on the moldad blade. The dovetail
axial centerline is offset from the stacking axis by 0.254 cm (0.1 in.) to
vrovide a smooth airfoil-to~dovetail transitiom.

Material Selection/Blade Lay-up Configuration

Material selection and ply arrangement for the UIW hybrid composite blade
is based on previous developmen: efforts conducted by General Electric and
sponsored by NASA under contract NAS3-16777 and development effort ~~nducted
during the preliminary design phase of the QCSEE program. These efforts led
to the selection of a combination of fibers in a single blade to provide the
proper frequency responses to satisfy STOL engine conditions. Figure 42
shows the general ply shapes, lay-up arrangement, fiber orientations, and
material in each ply of the blade. Figure 43 shows a triwmetric view of the
general arrangement of the plies in the blade. The flex root surface plies
in the lower region of the blade contain S-glass fibers. These plies being
near the surface and having relatively low bending stiffness and high tensile
strength provide higher strain~to-failure characteristics, thereby allowing
the blade to absorb large bird impact loading without the classic root failure
that usually accompanies brittle composite materials. Torsional stiffening
plies in the airfoil region of the blade are oriented at + 45° to provide the
shear modulus required for a high fire* torsional frequency. These plies
contain boron toward the outer surfaces of the blade :nd graphite in the
inner regions. Plies of Kevlar-4! are interspersed throughout the blade with
the majority of them being oriented with their fibers in the longitudinal
direction of the blade. Several of the Kevlar plies in the tip region of the
blade are oriented at 90° to the longitudinal axis to provide chordwise
strength and stiffness to the blade.

The resin system being used in this program is a product of the 3M
Company and is designated as PR288., This is a resin system that has proven
characteristics in the prepreg form which are:

) Has consistent processing characteristics

e Can be prepregged with many different fibers including hybrids

® Uniform prepreg thickness and resin content control

Typlcal propeirties of the PR288/AS prepreg are shown in Table 7.

Material properties for several fiber composite prepregs are shown in
Table 8.
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Table 7.
Property
Supplier
Process

Cure Schedule
Postcure Schedule
Flexural Strength
Room Temperature
121° € (250° F)
Eiastic Mod.
Room Temperature
121° C (250° F)
Short Beam Shear
Room Temperature
121° T (2%0° F)
Charpy Impact
Fiber Volume, %
Sp. Gr., g/cc

Void Content 7%

a0

PR288/AS Prepreg Properties,

PR288/AS

M

Film ~ Cont. Tane

2.5 hrs at 129° C (265° ¥

4 hrs at 135° C (275° F)

193 kN/cm® (280 ksi

138 kN/cm2 (2C5 ksi)

11.9 kN/cm2 (17.2 ksi)

1.6 k’i/cm2 (16.8 ksi)

9.0 l«N/cm2 (13.0 ksi)
5.2 kN/cm2 ( 7.5 ksil
8.0 m-N (6.0 ft-1b)
59.8

1,58

0.0
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Dovetail Design

The dovetail design for the composite fan blade consists of a straight
bell-shaped dovetail with a 8.89-cm (3-1/2-in.) radius. The bell-shaped
dovetail design reflects many years of development efforts to achieve an
efficient dovetail configuration having both high static pull strength and
good fatigue strength, All airfoil plies extend continuously down into the
dovetail and are interspersed with insert plies which act to £fill out the
enlarged cross section. This is seen in Figure 44 which shows a radial sec-
tion of the blade root and dovetail prior to dovetail machining. The final
dovetail is shown in Figure 41.

Platform Design

The QCSEE UTW engine incorporates a variable-pitch fan. The blade
variable~pitch operation requires a circular opening through the spimmer and
hub to permit airfoil clearance in the different blade position rotations -
either actuated in the flat pitch or stall direction. To maintain reasonable
actuation forces and blade dovetail stresses, the centrifugal loading on
each blade platform and dovetail must be kept to a minimum. This requires
a lightweight design. Therefore, composite platforms in addition to composite
blades are necessary. The following paragraphs summarize the design require-
ments and description of the platform.

The platform design selected for the QCSEE UIW blade satisfies several
requirements including (1) lightweight - less than 0.16 kg (0.35 1b), (2) a
structural stress margin of safety of 2 at 3326 rpm to provide for positive
margin at the design burst condition of 4700 rpm, (3) a fail-safe design in
the event the platform-to-blade bond tecomes ineffective, and (4) a low
radial deflection - less than 0.05 cm (0,020 in,) at tip of platform overhang.
In addition, the circular opening required for blade rotation is filled by the
platform. The platform is attached to the blade and contoured to match
closely the spinner and hub which make up the fan inner aerodynamic contours
and provide a smooth inner flowpath. The platform is also designed to avoid
interference with adjacent blades and adjacent platforms during variable-pitch
blade turning.

Structurally the platform is a varying width tapered beam cantilevered
from the blade root. It consists of honeycomb core stabilized by upper and
lower graphite/epoxy face sheets which are simultaneously molded and bonded
onto the blade using a co-curing process. The result is a one piece platform
design, With structural plies extending around the blade root leading and
trailing edge undercuts, the single-piece design has the inherent capability
of being retained even with a complete loss of the blade-to-platform adhesive
bond. This satisfies the fail-safe requirements.

Figure 38 shows the final platform on the blade, while Figure 45 is a
schematic showing the platform details.
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3.2.3 Design Analysis

Blade Stress and Deflection Analysis

The blade stresr analysis was perfcrmed using the 3-D finite element
computer program "PARA-TAMP-EIG". This program is a parametric, 3-D finite
element eigenvalue and thermal stress computer program, The program accounts
for the inertia forces of rotation and vibration. Account is taken of the
stiffening effect of rotation. The progr.n gives directly the lowest eight
modes, stresses, »nd frequencies for a specified speed of rotation. In addi-
tion, it gives deflections and stresses at any given operating rpm. The
material properties are 3~D anisotropic. Thermal stresses are also computed.

The finite element model used for the blade analysis was generated to
geometrically represent the blade design, without platform, as shown in
Figure 41.

A numhe¢ of cuuputer runs were made to provide steady-state stresses
under centrifugal and pressure loading conditions and vibratory (eigenvalue/
eigenvector) relative stresses at zero and speed conditions assuming the blade
dovetail to bYe fixed at the radial cross section corresponding to the PA plane
as defined in Figure 41, The steady-state results at 3326 rpm (the blade
duty cycle steady~state speed) show that the highest tensile stresses exist
in the airfoil-to~dovetail transition region sligntly above the leading edge
undercut, The highest calculated tensile stress is 15,490 N/ cm? (22,460 psi).
The highest compressive stress is 3790 N/cm? (5,500 psi) at the corresponding
trailing edge location. The highest calculated shear stress is 3400 N/cm?
(4,930 psi) in the region of the leadiny edge overhang. The material minimum
tensile, compressive, and shear strengths are 58,600 N/cm? (85,000 psi),
17,240 N/cm? (25,000 psi), and 4,480 N/cm® (6,500 psi), providing margins of
safety of 2.7, 3.5, and 0.3, respectively. The margin of safety in shear
at the leading edge undercut region is expected to be improved by the addition
of the platform which will share in carrying the shear loads to the dovetail.
Figure 46 shows a plot of stresses as a function of blade span length, while
Figures 47, 48, and 49 show stress maps for the concave and convex blade faces
for radial stress, chordwise stress, and interlaminar shear stress, respec-
tively. Figure 50 gives a plot of blade deflection and twist as a function of
span length., Figures 51, 52, and 53 show relative radial stresses over the
blade for the first three vibratory modes. These maps of relative radial
stresses under vibratory conditions show the changes in stress locations for
the different vibratory modes.

Blade vibratory strengths as determined from specimens and preliminary
QCSEE blade testing are shown on the stress range diagram in Figure 54. The
anticipated maximum vibratory stress is 1l ksi single amplitude on the basis
of testing on other engine programs. For the steady-state conditions shown,
that of a hot-day takeoff and maximum standard-day cruise, the combination
of steady-state mean stress and expected maximum vibratory stress results in
an acceptable blade life.
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The blade composite dovetail stresses were determined using the radial
load distribution from the above blade analysis and experimental data from
previous 2-D dovetail specimens and blade testing. Maximum dovetail crushing
stress is calculated to be 15,290 N/cm? (22,180 psi), and maximum dovetail cal-
culated shear stress is 4,760 N/cm? (6,900 psi) at a blade speed of 3326 rpm.
The allowable dovetail crushing and shear strengths are 55,160 N/cm? (80,000
psi) and 16,550 N/cm? (24,000 psi), respectively, showing adequate static
strength margins of safety in each case. These strengths were further veri-
fied by two blade-dovetail pull tests which demonstrated corresponding minimum
crushing and shear strengths of 56,750 N/cm? (82,300 psi) and 17,650 N/cm?
(25,600 psi) respectively. It is expected that these strengths would actually
be higher in that the test load reached the capability of the loading fixture
without dovetail failure.

The dovetail vibratory strengths were projected from previous composite
experimental data and the QCSEE dovetail static strength data. Figure 55
shows the allowable stress range disgram for dovetail crushing, and Figure 56
shows the allowable stress range diagram for dovetail shear. The anticipated
maximum single-amplitude vibratory stresses are 5,580 N/cm? (8,100 psi) in
crushing and 2,340 N/cm? (3,400 psi) in shear and are based on the anticipated
maximum blade radial vibratory stresses. For the steady-state conditions
shown, that of hot-day takeoff and maximum cruise, the combination of steady-
state mean stress and expected maximum vibratory stress results in an accept-
able dovetail life.

Platform Stress and Vibration Analysis

The analytical approach used in evaluating the platform was to calculate
the stresses and mechanical frequencies using simple conservative models of
unit width cross sections representing the platform design. The stresses were
calculated for the platform operating in the 5259 "G" centrifugal force field
resulting from 1007 speed operation at 3326 rpm. Positive margin at a 41%
overspeed condition of 4700 rpm is met by maintaining a margin of safety,

MS = 2 at 3326 rpm., As a further precaution to guard against a possible
material property loss from the planned manufacturing co-curing process, only
70% of the published material allowable is used.

Fignre 57 shows a cross section of the platform. Since the outer face
sheet (location 5 flowpath surface, Figure 57) is an eccentric compressively
loaded sheet operating in a centrifugal force field producing lateral loading
and is stabilized by the honeycomb bond, it has been investigated for its
beam-column capability. It is designed to be adequate even with a partial
loss of honeycomb bond. For correlation with the analysis and to investigate
various alternate design features, typical platform sections have been manu-
factured and tested. The testing has supported the analytical findings and
at location 3, has identified the load carrying capability to be greater than
490 N/cm (280 1b/in,) normal to the blade centerline. This has allowed a
MS = 2 at location 3 to be identified by test where an otherwise difficult
analysis would be required to identify the maximum stress.

A stress and margin-of-safety summary is presented in Table 9 for six
points of interest.
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Alternating Stress, ksi
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Mean Stress, ksi
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Table 9. Platform Stresses and Margins of Safety.

Location Stress, Margin
of Description and kN/cm? of
Interest Type of Stress (ksi) Safety

1 Flexural Stress in Overhang up to 0< 16.5
2.5 em (1 inch) with Additional (24) > 2.0
Single Thickness Overhang up to 1 cm
(.400 inch)
2 Tengile Stress in Lower Face Sheet o< 13.8 >2.2
(20)
3 Tensile Stress Capability at this
Location is Correlated with Test - > 2.0
Results
4 Tensile Stress in Leading Edge o< 13.8 > 2.0
Not Shown Strap (20)
5 Combined Compression and Flexural o< 24 >2.0
Stress in Upper Face Sheet (35)
6 Shear Stress Between Upper and < .05 > 2.1
Lower Face Sheets (.07)
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The platform is modeled and the vibratory charac:eristics are investi-
gated from three points of view. Fi-st, the platform is consid<red canti-
levered from the blade. 8Second, as 2 member running irom fore .o aft, it is
congidered free from the blade to flex in a free-free (floating) condition
and, in the tangential direction (stiil free from the blade), it is con-
sidered to be cantilevered from the leading and trailing edge straps. Third,
the upper face sheet with a partial loss of the horeycomb bond is considered.
The first natural frequencies for these various models are tabulated in Table
10.

The platform is stiffer than any of the models used to calculate the
first natural frequency. Therefore. the platform's first natural frequency
is higher than those calculated and will be above the excitation frequencies
of the blade.

The platform weight at less than 0.16 kg (0.35 1b) is composed of 20%
honeycomb, 10% adhesive, and 70% graphite/ecpoxy composite.

The platform is fabricated in one piece which is simultaneously molded
and bonded onto the composite blade using a co-curing process. The upper face
sheet or flowpath contour is controlled by a hard die fi:ted around the blade.
The graphite/epoxy upper face sheet is layed-up on the contour formed by the
die and blade root surface. A contoured aluminum honeycomd core is next put
in place followed by the lower face sheet layed-up on the honeycomb core.

The layed-up assembly ls then put into a vacuum bag aud the entire assembly
ie co-cured onto the blade. The result is a one-piece platform design. The
outer contour of the platform overhang is then trimed to final dimensions.

Blade Vibratiou Analysis

Blade "instability" or "limit cycle vibration" can be a problem on fans.
It 1s characterized by a hign amplitude vibration in a single mode (nurmally
the first flexural or torsioral mode) at a ponintegral per-rev frequency.
Because of the nonlinearity in the acrodynamics involved, it has resisted
practical solutions by solely theorztical means. Accordingly, General Elec-
tric has adopted a semiempirical '"reduced velocity parameter' approach for
limit cycle avoidance. Reduced velocity parameter, VR, gives a measure of a
blade's stability against self-excited vibration., This parameter is defined
as:

VR = E%:
where:
b = 1/2 chord at 5/5 stan, m
W = average air velocity relative to the blade over the outer
third of the span, m/sec
fr = first torsional frequency at design rpm, rad/sec
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Table 10,

Platforin Natural Frequencies,

Models

Considered

First Natural
Frequency

—<

Cantilever
(Platform)

f1 > 5000 Hz

=

Cantilever

(Platform Overhang)

f; > 2000 Hz

Free-Free
(Platform)

f, > 8000 Hz

g.,_

Cantilevered Mass
End Straps
Supporting a
Free Platform

f; > 1500 Hz

—

Clamped Beam
Face Sheet Partial
Loss of H/C Bond

)

£, > 1500 Hz
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The basic criterion used for setting the design of the UTW composite blade was
the requirement of having a reduced~velocity parameter in the range of 1.3 to
1.4. This allowable range is based cn previous testing of a variety of fan
configurations in combination with the specific aerodynamic design of the UTW
blade. The 18-blade design using a hybrid of boron, graphite, and Kevlar
material was selected to provide the desired aeromechanical requirements. The
operating and stall characteristics of this blade are presented in Figure 58

in terms of reduced velocity versus incidence angle. This shows the capability
of reaching full~rotation stall prior to encountering blade instability.

The Campbell diagram for the UTW blade assembled in the trunnion and disk
is shown in Figure 59, The coupled frequency of the blade-trunnion assembly,
as plotted here, is somewhat lower than the individual blade frequencies due
to the flexibility of the supporting trunnion and disk. The expected first
flexural frequency at 2/rev crossover is shown to be at 67% speed. This is
above the engine flight idle speed and below the normal operating speed for
takeoff, climb, aand maximum cruise flight conditions; it is therefore con-
sidered a transient point in the flight mission and not subject to continu-
ous steady-state conditions. Blade excitation stresses at 2/rev crossover will
be monitored during engine testing. Blade pitch and speed changes will be
employed should the stress levels become excessive.

The margin for first flexural frequency over l/rev at 115% speed is
approximately 50%, and the margin for first flexural frequency below 2/rev
at 100% speed is approximately 13Z.

The second flexural mode crosses several per/rev lines in the operating
speed range. Each of these crossings represent a potential for forced reso-
nances; however, it takes considerably more energy to drive the higher vibra-
tion frequencies such as second flex, and no problems are anticipated.

The first torsional frequency 6/vev crossover is at approximately 33%
speed with the 100% speed frequency margin being approximately 6% over 5/rev.
Since the excitation forces should be small at the higher order crossovers,

no vibratory problems are anticipated during normal engine operating condi-
tions.

Blade Impact Analysis

In addition to the need to satisfy fltter requirements, resistance to
bird impact is also of major importance. Flight-engine (QCSEE blades must be
capable of absorbing the impact of 16 0.085-kg (3-0z) birds (starlings), eight
0.68-kg (1.5~1b) birds (pigeons), and a 1l.8-kg (4~1b) bird in order to sat-
isfy FAA specifications. The objectives are to sustain little or no damage
during starling ingestion, be able to maintain 75% engine thrust following
pigeon ingestion, and to be able to have a safe engine shutdown with all
damage being contained within the engine casing following ingestion of a
1.8-kg (4-1b) hird,

Two different damage modes require consideration in the design. The
first is a brittle-root~type fracture which can result in the blade breaking
cff close to the dovetail, and the second is local damage which can result in
airfoil delamination and loss of material.
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The projected elimination of root failures during large-bird impact in
the QCSEE blade has been achieved. The necessary flexibility and strain-to-
faiiure capability uas been built into the blade root through the use of
hybrid materials. The dovetail design provides for energy dissipation through
centrifugal recovery and increase in friction energy. Figure 60 illustrates
the magnitude of energy that has to be absorbed by the blade at the root,
tip, and pitch for the spectrum of relative bird velocities for a 1.8-kg
(4-1b) bird. This shows that the most vulnerable condition and blade impact
location is during climb at approximately 91.4 m/sec (300 f:t/sec) and at the
blade 502 span location, respectively. The predicted gross impact capability
of the QCSEE blade is shown in Figure 61. This shows the advantages of the
QCSEE dovetail attachment and the use of hybrid materials over the previous
fixed-root solid graphite-type blade. Figure 62 shows a plot of the calcu~
lated projectile normal momentum for a 0,68-~kg (1.5-1b) bird at the blade 50%
and 75% span locations as a function of airplane speed.

Weight

The weight of the composite blade was computed using the final blade
configuration as shown in Figure 41. The resulting weight breakdown is as
follows:

_kg_ b
Composite 2irfoil 1.74 3.83
Leading Edge Protection 0.20 0.45
Polyurethane Coating 0.07 0.15
Platform and Adhesive Bond 0.15 0.34
Dovetail 0.47 1.03

TOTAL WEIGHT 2,63 5.80
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3.3 FAN DISK

The UTW fan disk is a single-piece-machined 6A1-4V titanium ring forging
designed for a commercial life in excess of 36,000 hours. This disk is shown
in Figure 63, Eighteen radial holes pierce the disk ring to provide for the
blade support trunnions which retain the fan blades. An integral cone on the
aft side of the disk comnects the disk to the fan stub shaft through a bolted
flange. The disk cone is contoured to alleviate LCF problems generated by
the forward and aft cycles of thrust generated during engine operation.
Flanges on the outside of the disk rim previde attachment planes for the spin-
ner and forward and aft flowpath adapter ccnes.

The inside of the disk rim is a turned mod:.fied spherical blade bearing
seating surface for the blade retention bearing (Figure 64). This results
in a low-cost, lightweight disk design with a uniformly stressed rim. Blade
thrust bearings have mating spherical seats and arc mounted as shown in Figure
64. The bearing seating surface is not machined perfectly spherical but is
decigned to become spherical under operating loads. A spherical copper shim
is included between the disk and the bearing, although (at the pressure load-
ings expected beneath the bearing) fretting is not expected to be a probler.

The UTW fan disk design loads and stress data are shown in Tsble 11 for
both the GE and Hamilton Standard actuators. Resulting actual and allowable
stresses on the rotor configuration are shown in Figure 65 for the Hamilton
Standard variable-pitch fan actuation system loads. As shown in the figure,
the final design provides adequate margin of safety at all critical stress
locations.

3.4 BLADE SUPPORT BEARING

The blade support bearing (Figure 63) has a full complement of balls to
reduce the per-ball loading. Bearing race conformance is relatively high
(51%) to achieve the required bearing fatigue life in its highly loaded
environment. All surfaces on this bearing will be coated with a tungsten
disulfide film, Tests on previous General Electric variable-pitch fan bear-
ings have shown this coating provides enough lubrication to enable the bear-
ing to safely operate for 9000 flight hours in the event of a loss-of-grease
situation.

The blade support thrust bearing configuration is illustrated in Figure
66. Shields attached to the outer race create a centrifugal "cup" which
prevents the grease from leaking out in the high centrifugal field when the
engine is rumning. Grease will not leak from the clearance gaps at the bot-
tom of the shields when the engine is not operating due to the high viscosity
of the grease, provided oil separation from the grease soaping agent does not
occur. General Electric has conducted centrifuge tests on various greases
to decermine separation tendencies and has selected one which has little
tendency to separate under prolonged periods of high "g" loads.
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Spherical
Surface

Figure 64, UTW Bearing and Disk Seat,
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Table 11. UTW Fza Disk Design Data.

All Loads and Stresses Calcula.:d at 3326 RPM

Attachment Load

122

With GE Pinion Gear
With HS Lever Arm
Average Rim Stress (GE)

(HS)
Burst Speed

ICF Life of Disk With =3¢
Material Properties

LCF Life ol Disk With
0.01 x 0.C3 Initial Defect

327,718 N/Blade

328,932 N/Blade

35.577 x 10’ N/m?

N

38.299 x 10’ N/m

(73,674 1b/Blade)
(73,947 1b/Blade)
(51,600 psi)
(55,446 psi)

4928 rpm

48,000 Cycles

16,000 Cycles
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Spherical

Seating
,//PiSurface

Lubricant

‘(”””’,a”seals

® Single Row Ball Thrust Bearing
e Full Complement of Balls (12)
e High Conformance (51%)

® Separable Races

® Lubricant Seals

Figure 66. Blade Thrust Bearing,
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Design criteria peculiar to variable-pitch blade support bearings were
developed and applied to the design of this bearing. Unique design criteria
used in designing the QCSEE UTIW bearing are as follows:

1, ‘'The blade support bearing system B10 life should be 9000 flight
hours. This requires an individual bearing B10 life of over 13
times the syster: B10 life. The need for this stringent require-
mept is based on the statistical problem of a multibearing (18)
system in a multiengine (4) aircraft.

2. Blade support bearings will not be dependent upon the grease lubri-
cant to obtain 9000 hours between overhauls. This restriction
ensures that failure will not occur due to loss of bearing grease.

In addition to normal bearing design criteria, the following require-
ments must also be met, or by definition, failure is said to occur:

a. An apparent coefficient of friction at the pitch diameter less
than 0,01, This allows the blade actuator to be designed to a
maximum capacity with assurance that it will not be overloaded
because of worn bearings.

b. Bearing wear less than the bearing preload [approximately
0.00508 cm (0.002 inch) total wear]. This definition provides
a simple method for condition monitoring without rotor dis-
assembly.

3. Ball or race fracture must not occur under the maximum possible bird
impact loads., The actuation system of an 18-bladed fan is suffi-
ciently powerful to cause secondary damage upon seizure of any one
of the individual bearings. Ball fracture, a potential cause of
such seizure, must be eliminated as a potential problem.

4, Bearing life calculations are based or the mission/duty cycle as
shown in Table 12. Biade angle and cycle amplitude data correspond
to information presented in Figure 67, A total blade modulation of
180° per mission (in 2° increments) is assumed during aircraft
approach for bearing life analysis,

The upper surface of the top bearing race is a spherical surface which
is designed in conjunction with the disk bearing seat to minimize transmission
of warping stress to the race under operating conditions. This spherical
mating surface will be coated with an antifretting coating to ensure that loss
of LCF life of the fan disk will not occur,

Bearing loads and life predictions are given in Table 13. As indicated
in Table 12, the number of bearing cycles during 9000 hours of engine opera-
tion is approximately 12 times greater when modulation during approach is
assumed than without modulation. As shown in Table 13, the bearing B10
system life in terms of engine operating hours exceeds the 9000-hour TBO
requirement when modulation during approach is assumed and exceeds the total
engine life requirement of 36,000 hours if blade modulation during approach
is not required.
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3.5 BLADE TRUNNION

Blade trunnions mechanically tie the composite fan blades to the fan disk
through the blade support bearing. They also provide an attachment point
through which torque can be applied by the blade actuator to change the pitch
of the blades. The QCSEE UTW blade retention trunnion is shown in Figure 68.

The entire blade support system is designed to withstand the maximum
possible loads which can be transmitted into it by the blades without blade
failure. This includes not onl  the trunnion but all of its mating compo-
nents. This ensures that, in the event of extensive foreign object damage,
only small composite fan blade pieces will be broken off and secondary
engine damage will be minimized.

Fan blades slide into the dovetail slots on top of the trunnion and are
retained by shouldered straps. Marage 250 is used for the straps because of
its very high strength. The dovetail slot will be protected by an anti-
fretting coating applied to the blade dovetails. Two plasma-sprayed coatings,
one plated coating, and a chemical-conversion coating are presently being
considered for this wear coating.

The trunnion is machined from single forgings of 6Al1-4V titanium. This
material was selected based on its natural corrosion resistance, low density,
and high strength. Titanium also allows relatively large-diameter threads
to be rolled by more conventicnal capacity thread rolling equipment on the
trunaion end (per Mil-S5-8879) for the trunnion retainer. This rolling pro-
cedure has been used on the titanium trumniors of previous General Electric
variable-pitch fans and produces above average properties in this critical
region. Critical trumnnion stresses are shown on the drawing in Figure 69.
All stresses fall within the allowable limits with an adequate margin of
safety.,

Each trunnion is held in the hole of the disk by a silver-plated,
threaded steel retainer. A stress summary for this trunnion retainer (nut)
is presented in Table 14. This retainer can be torqued to preload the blade
support bearing, and is locked by a redundant locking system. Either a
pinion gear for the CE actuation system or a lever arm for the Hamilton Stan-
dard System is captured on the trunnion between the trunnion retainer and the
blade support bearing [see Figures 70 (GE) and 71 (HS)]. Torque to change
the blade pitch is carried through this device into mating splines just above
the trunnion threads,

Outer sliding bearirgs support the top of the trunnion. The outer sleeve
sliding bearing and axial thrust seating surfaces will be a very high capacity
bearing of Nomex and Teflon fibers. This bearing seats inside the disk and
can easily tolerate the circumferential strain of the disk. The high capacity
of this bearing, compared to conventional ball bearings, enables it to easily
withstand anticipated vibratory and bird impact loads. The outer bearing has
resistance to all vils, fuels, and solvents which might normally ..ome in con-
tact with engine parts.
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Figure 68. Blade Trunnion,
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Blade Trunnion
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Figure 71, HS Variable Pitch Interface,
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Two sources, the sliding bearing and thrust bearing, produce friction
torques whic% resist rotation of the trunnion during blade pitch change. The
sliding bearing's friction torque results from the steel retainer's clamping
load and is relieved at speed by the centrifugal load of the blade and trun-
nion. The thrust bearing friction torque results from the centrifugal load
of the blade and trunnion. A tandem bearing component test has determined
the thrust bearing friction torque to be 56.5-61 N-M (500-540 1b-in.) at
the calculated centrifugal load of the trunnion and blade at 3326 rpm.

3.6 FAN SPINNER

The UTW fan has both a rotating forward spinner and flowpath adapters as
shown in Figures 36 and 63. These parts attach to flanges on the fan disk.
Both fore and aft rotating flowpath adapters are scalloped where they meet
to provide round holes for the blade platforms. Together they provide the
inner flowpath for the fan, The spinner and flowpath adapters are fabri-
cated from 6061 aluminum. This material has good section stiffness-to-weight

and has the good welded properties needed for fabricating development hard-
ware.

The forward spinner also has a spinner cap for inspection and access to
the interior of the fan assembly and the slipring hardware. After removal
of he fan spinner, all of the rotating hardware and sump regions forward of
the fan frame are easily accessible, Blades may be individually replaced, and
the blade actuator or the actuator and disk as.embly may be removed as a pack-
age. This permits removal of the fan disk assembly, blade actuator, and main
reduction gear as a complete module.

Radial fan balance screw bosses are provided in the spimner., This will
permit field balance of the engine without removal of the spinner. The con-
cept has been developed and used successfully on General Electric's CF6-50
engine.

The aft flowpath adapter continues the inner flowpath back to the fan
core OGV's, A flow discourager seal inhibits air recirculation at this point.
There are access holes in the flange of the aft spinner which, with the for-
ward spinner removed, permit access to the fan frame flange which retains the
main reduction gear. Critical spinner and adapter stresses are shown in
Figure 72, As shown, all stresses fall well within the allowable limits.

3.7 FAN ATTACHMENT HARDWARE

All bolted joints in the fan rotor use Inco 718 bolts and dry-film-
lubricant coated A286 nuts. The main rotor joint to the fan stub shaft is
held with 18 MP159 1.27 cm (1/2 in.) - 20 bolts, MP159 was chosen for its
high strength. Bolt preload has been set to assure that total torque in the
joint can be carried in friction. A summary of the disk cone flange bolt
design characteristics is presented in Table 15.
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Table 15. Disk Cone Flange Bolts.

Number 18 bolts

Size - 1,27 em (1/2 in,) - 20

Material - MP159

Torque 217-271 mN (160 - 200 ft-1b)

Min. Preload - 82,288 N (18,500 1b) per bolt

Total Preload - 1,481 kN (33,000 1b)

Percent Torque Carried by Friction -1257% At = 0.15
Bladeout (5 blades) Stress 64,124 N/cm2 (93,000 psi)

Min. Pre oad Stress in bolts - 76,672 N/cm2 (111.200 psi)
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